2025年高考总复习首选用卷数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考总复习首选用卷数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第129页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
12.(多选)已知正四面体的外接球、内切球的球面上各有一动点M,N,若线段MN的最小值为√6,则 ( )
A.正四面体的棱长为6
B.正四面体的内切球的表面积为6π
C.正四面体的外接球的体积为8√6π
D.线段MN的最大值为2√6
A.正四面体的棱长为6
B.正四面体的内切球的表面积为6π
C.正四面体的外接球的体积为8√6π
D.线段MN的最大值为2√6
答案:
ABD [设这个正四面体的棱长为a,则此正四面体可看作棱长为$\frac{\sqrt{2}}{2}$a的正方体截得的,所以正四面体的外接球即为正方体的外接球,外接球的直径为正方体的体对角线长,设外接球的半径为R,内切球的半径为r,则2R = $\sqrt{3×(\frac{\sqrt{2}}{2}a)^{2}}$ = $\frac{\sqrt{6}}{2}$a,所以R = $\frac{\sqrt{6}}{4}$a,正四面体的高h = $\sqrt{a^{2}-(\frac{\sqrt{3}}{3}a)^{2}}$ = $\frac{\sqrt{6}}{3}$a,由等体积法可得$\frac{1}{3}$Sh = 4×$\frac{1}{3}$Sr,所以r = $\frac{1}{4}$h = $\frac{\sqrt{6}}{12}$a,由题意得R - r = $\sqrt{6}$,所以$\frac{\sqrt{6}}{4}$a - $\frac{\sqrt{6}}{12}$a = $\sqrt{6}$,解得a = 6,所以A正确;因为内切球的半径r = $\frac{\sqrt{6}}{12}$×6 = $\frac{\sqrt{6}}{2}$,所以内切球的表面积为4πr² = 4π×($\frac{\sqrt{6}}{2}$)² = 6π,所以B正确;因为外接球的半径为R = $\frac{\sqrt{6}}{4}$×6 = $\frac{3\sqrt{6}}{2}$,所以外接球的体积为$\frac{4}{3}$πR³ = $\frac{4}{3}$π×($\frac{3\sqrt{6}}{2}$)³ = 27$\sqrt{6}$π,所以C错误;线段MN的最大值为R + r = $\frac{3\sqrt{6}}{2}$ + $\frac{\sqrt{6}}{2}$ = 2$\sqrt{6}$,所以D正确. 故选ABD.]
13.(2023·全国乙卷)已知圆锥PO的底面半径为√3,O为底面圆心,PA,PB为圆锥的母线,∠AOB = 120°,若△PAB的面积等于9√3/4,则该圆锥的体积为 ( )
A.π B.√6π C.3π D.3√6π
A.π B.√6π C.3π D.3√6π
答案:
B [在△AOB中,∠AOB = 120°,而OA = OB = $\sqrt{3}$,取AB的中点C,连接OC,PC,则OC⊥AB,PC⊥AB,如图,∠ABO = 30°,OC = $\frac{\sqrt{3}}{2}$,AB = 2BC = 3,由△PAB的面积等于$\frac{9\sqrt{3}}{4}$,得$\frac{1}{2}$×3×PC = $\frac{9\sqrt{3}}{4}$,解得PC = $\frac{3\sqrt{3}}{2}$,于是PO = $\sqrt{PC^{2}-OC^{2}}$ = $\sqrt{(\frac{3\sqrt{3}}{2})^{2}-(\frac{\sqrt{3}}{2})^{2}}$ = $\sqrt{6}$,所以圆锥的体积V = $\frac{1}{3}$π×OA²×PO = $\frac{1}{3}$π×($\sqrt{3}$)²×$\sqrt{6}$ = $\sqrt{6}$π. 故选B.]
B [在△AOB中,∠AOB = 120°,而OA = OB = $\sqrt{3}$,取AB的中点C,连接OC,PC,则OC⊥AB,PC⊥AB,如图,∠ABO = 30°,OC = $\frac{\sqrt{3}}{2}$,AB = 2BC = 3,由△PAB的面积等于$\frac{9\sqrt{3}}{4}$,得$\frac{1}{2}$×3×PC = $\frac{9\sqrt{3}}{4}$,解得PC = $\frac{3\sqrt{3}}{2}$,于是PO = $\sqrt{PC^{2}-OC^{2}}$ = $\sqrt{(\frac{3\sqrt{3}}{2})^{2}-(\frac{\sqrt{3}}{2})^{2}}$ = $\sqrt{6}$,所以圆锥的体积V = $\frac{1}{3}$π×OA²×PO = $\frac{1}{3}$π×($\sqrt{3}$)²×$\sqrt{6}$ = $\sqrt{6}$π. 故选B.]
14.(2023·全国甲卷)在三棱锥P - ABC中,△ABC是边长为2的等边三角形,PA = PB = 2,PC = √6,则该棱锥的体积为 ( )
A.1 B.√3 C.2 D.3
A.1 B.√3 C.2 D.3
答案:
A [取AB的中点E,连接PE,CE,如图,
∵△ABC是边长为2的等边三角形,PA = PB = 2,
∴PE⊥AB,CE⊥AB,
∴PE = CE = 2×$\frac{\sqrt{3}}{2}$ = $\sqrt{3}$,又PC = $\sqrt{6}$,故PC² = PE² + CE²,即PE⊥CE,又AB∩CE = E,AB,CE⊂平面ABC,
∴PE⊥平面ABC,
∴VP - ABC = $\frac{1}{3}$S△ABC·PE = $\frac{1}{3}$×$\frac{1}{2}$×2×$\sqrt{3}$×$\sqrt{3}$ = 1. 故选A.]
A [取AB的中点E,连接PE,CE,如图,
∵△ABC是边长为2的等边三角形,PA = PB = 2,
∴PE⊥AB,CE⊥AB,
∴PE = CE = 2×$\frac{\sqrt{3}}{2}$ = $\sqrt{3}$,又PC = $\sqrt{6}$,故PC² = PE² + CE²,即PE⊥CE,又AB∩CE = E,AB,CE⊂平面ABC,
∴PE⊥平面ABC,
∴VP - ABC = $\frac{1}{3}$S△ABC·PE = $\frac{1}{3}$×$\frac{1}{2}$×2×$\sqrt{3}$×$\sqrt{3}$ = 1. 故选A.]
15.(2023·天津高考)在三棱锥P - ABC中,线段PC上的点M满足PM = 1/3PC,线段PB上的点N满足PN = 2/3PB,则三棱锥P - AMN和三棱锥P - ABC的体积之比为 ( )
A.1/9 B.2/9 C.1/3 D.4/9
A.1/9 B.2/9 C.1/3 D.4/9
答案:
B [如图,因为PM = $\frac{1}{3}$PC,PN = $\frac{2}{3}$PB,所以$\frac{S_{\triangle PMN}}{S_{\triangle PBC}}$ = $\frac{\frac{1}{2}PM·PN\sin\angle BPC}{\frac{1}{2}PC·PB\sin\angle BPC}$ = $\frac{PM·PN}{PC·PB}$ = $\frac{1}{3}$×$\frac{2}{3}$ = $\frac{2}{9}$,所以$\frac{V_{P - AMN}}{V_{P - ABC}}$ = $\frac{V_{A - PMN}}{V_{A - PBC}}$ = $\frac{\frac{1}{3}S_{\triangle PMN}·d}{\frac{1}{3}S_{\triangle PBC}·d}$ = $\frac{S_{\triangle PMN}}{S_{\triangle PBC}}$ = $\frac{2}{9}$(其中d为点A到平面PBC的距离,因为平面PMN和平面PBC重合,所以点A到平面PMN的距离也为d). 故选B.]
B [如图,因为PM = $\frac{1}{3}$PC,PN = $\frac{2}{3}$PB,所以$\frac{S_{\triangle PMN}}{S_{\triangle PBC}}$ = $\frac{\frac{1}{2}PM·PN\sin\angle BPC}{\frac{1}{2}PC·PB\sin\angle BPC}$ = $\frac{PM·PN}{PC·PB}$ = $\frac{1}{3}$×$\frac{2}{3}$ = $\frac{2}{9}$,所以$\frac{V_{P - AMN}}{V_{P - ABC}}$ = $\frac{V_{A - PMN}}{V_{A - PBC}}$ = $\frac{\frac{1}{3}S_{\triangle PMN}·d}{\frac{1}{3}S_{\triangle PBC}·d}$ = $\frac{S_{\triangle PMN}}{S_{\triangle PBC}}$ = $\frac{2}{9}$(其中d为点A到平面PBC的距离,因为平面PMN和平面PBC重合,所以点A到平面PMN的距离也为d). 故选B.]
16.(2023·全国甲卷)在四棱锥P - ABCD中,底面ABCD为正方形,AB = 4,PC = PD = 3,∠PCA = 45°,则△PBC的面积为 ( )
A.2$\sqrt2$ B.3$\sqrt2$ C.4$\sqrt2$ D.5$\sqrt2$
A.2$\sqrt2$ B.3$\sqrt2$ C.4$\sqrt2$ D.5$\sqrt2$
答案:
C
17.(多选)(2023·新课标Ⅱ卷)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB = 120°,PA = 2,点C在底面圆周上,且二面角P - AC - O为45°,则 ( )
A.该圆锥的体积为π B.该圆锥的侧面积为4√3π C.AC = 2$\sqrt2$ D.△PAC的面积为√3
A.该圆锥的体积为π B.该圆锥的侧面积为4√3π C.AC = 2$\sqrt2$ D.△PAC的面积为√3
答案:
AC [依题意,∠APB = 120°,PA = 2,所以OP = 1,OA = OB = $\sqrt{3}$,对于A,圆锥的体积为$\frac{1}{3}$×π×($\sqrt{3}$)²×1 = π,A正确;对于B,圆锥的侧面积为π×$\sqrt{3}$×2 = 2$\sqrt{3}$π,B错误;对于C,设D是AC的中点,连接OD,PD,则AC⊥OD,AC⊥PD,所以∠PDO是二面角P - AC - O 的平面角,则∠PDO = 45°,所以OP = OD = 1,故AD = CD = $\sqrt{3 - 1}$ = $\sqrt{2}$,则AC = 2$\sqrt{2}$,C正确;对于D,PD = $\sqrt{1^{2}+1^{2}}$ = $\sqrt{2}$,所以S△PAC = $\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{2}$ = 2,D错误. 故选AC.]
AC [依题意,∠APB = 120°,PA = 2,所以OP = 1,OA = OB = $\sqrt{3}$,对于A,圆锥的体积为$\frac{1}{3}$×π×($\sqrt{3}$)²×1 = π,A正确;对于B,圆锥的侧面积为π×$\sqrt{3}$×2 = 2$\sqrt{3}$π,B错误;对于C,设D是AC的中点,连接OD,PD,则AC⊥OD,AC⊥PD,所以∠PDO是二面角P - AC - O 的平面角,则∠PDO = 45°,所以OP = OD = 1,故AD = CD = $\sqrt{3 - 1}$ = $\sqrt{2}$,则AC = 2$\sqrt{2}$,C正确;对于D,PD = $\sqrt{1^{2}+1^{2}}$ = $\sqrt{2}$,所以S△PAC = $\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{2}$ = 2,D错误. 故选AC.]
18.(多选)(2023·新课标Ⅰ卷)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有 ( )
A.直径为0.99 m的球体
B.所有棱长均为1.4 m的四面体
C.底面直径为0.01 m,高为1.8 m的圆柱体
D.底面直径为1.2 m,高为0.01 m的圆柱体
A.直径为0.99 m的球体
B.所有棱长均为1.4 m的四面体
C.底面直径为0.01 m,高为1.8 m的圆柱体
D.底面直径为1.2 m,高为0.01 m的圆柱体
答案:
ABD [对于A,因为0.99 m < 1 m,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A符合题意;对于B,因为正方体的面对角线长为$\sqrt{2}$ m,且$\sqrt{2}$ > 1.4,所以能够被整体放入正方体内,故B符合题意;对于C,因为正方体的体对角线长为$\sqrt{3}$ m,且$\sqrt{3}$ < 1.8,所以不能够被整体放入正方体内,故C不符合题意;对于D,因为1.2 m > 1 m,可知底面正方形不能包含圆柱的底面圆,如图,过AC1的中点O作OE⊥AC1,设OE∩AC = E,可知AC = $\sqrt{2}$,CC1 = 1,AC1 = $\sqrt{3}$,OA = $\frac{\sqrt{3}}{2}$,则tan∠CAC1 = $\frac{CC_{1}}{AC}$ = $\frac{OE}{AO}$,即$\frac{1}{\sqrt{2}}$ = $\frac{OE}{\frac{\sqrt{3}}{2}}$,解得OE = $\frac{\sqrt{6}}{4}$,且($\frac{\sqrt{6}}{4}$)² = $\frac{3}{8}$ = $\frac{9}{24}$ > $\frac{9}{25}$ = 0.6²,即$\frac{\sqrt{6}}{4}$ > 0.6,故以AC1为轴可能对称放置底面直径为1.2 m的圆柱,若底面直径为1.2 m的圆柱与正方体的上、下底面均相切,设圆柱的底面圆心O1与正方体的下底面的切点为M,可知AC1⊥O1M,O1M = 0.6,则tan∠CAC1 = $\frac{CC_{1}}{AC}$ = $\frac{O_{1}M}{AO_{1}}$,即$\frac{1}{\sqrt{2}}$ = $\frac{0.6}{AO_{1}}$,解得AO1 = 0.6$\sqrt{2}$,根据对称性可知,圆柱的高为$\sqrt{3}$ - 2×0.6$\sqrt{2}$≈1.732 - 1.2×1.414 = 0.0352 > 0.01,所以能够被整体放入正方体内,故D 符合题意.故选ABD.]
ABD [对于A,因为0.99 m < 1 m,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A符合题意;对于B,因为正方体的面对角线长为$\sqrt{2}$ m,且$\sqrt{2}$ > 1.4,所以能够被整体放入正方体内,故B符合题意;对于C,因为正方体的体对角线长为$\sqrt{3}$ m,且$\sqrt{3}$ < 1.8,所以不能够被整体放入正方体内,故C不符合题意;对于D,因为1.2 m > 1 m,可知底面正方形不能包含圆柱的底面圆,如图,过AC1的中点O作OE⊥AC1,设OE∩AC = E,可知AC = $\sqrt{2}$,CC1 = 1,AC1 = $\sqrt{3}$,OA = $\frac{\sqrt{3}}{2}$,则tan∠CAC1 = $\frac{CC_{1}}{AC}$ = $\frac{OE}{AO}$,即$\frac{1}{\sqrt{2}}$ = $\frac{OE}{\frac{\sqrt{3}}{2}}$,解得OE = $\frac{\sqrt{6}}{4}$,且($\frac{\sqrt{6}}{4}$)² = $\frac{3}{8}$ = $\frac{9}{24}$ > $\frac{9}{25}$ = 0.6²,即$\frac{\sqrt{6}}{4}$ > 0.6,故以AC1为轴可能对称放置底面直径为1.2 m的圆柱,若底面直径为1.2 m的圆柱与正方体的上、下底面均相切,设圆柱的底面圆心O1与正方体的下底面的切点为M,可知AC1⊥O1M,O1M = 0.6,则tan∠CAC1 = $\frac{CC_{1}}{AC}$ = $\frac{O_{1}M}{AO_{1}}$,即$\frac{1}{\sqrt{2}}$ = $\frac{0.6}{AO_{1}}$,解得AO1 = 0.6$\sqrt{2}$,根据对称性可知,圆柱的高为$\sqrt{3}$ - 2×0.6$\sqrt{2}$≈1.732 - 1.2×1.414 = 0.0352 > 0.01,所以能够被整体放入正方体内,故D 符合题意.故选ABD.]
19.(2023·新课标Ⅰ卷)在正四棱台ABCD - A₁B₁C₁D₁中,AB = 2,A₁B₁ = 1,AA₁ = √2,则该棱台的体积为_______.
答案:
答案 $\frac{7\sqrt{6}}{6}$
解析 如图,过A1作A1M⊥AC,垂足为M,易知A1M为正四棱台ABCD - A1B1C1D1的高. 因为AB = 2,A1B1 = 1,AA1 = $\sqrt{2}$,则A1O1 = $\frac{1}{2}$A1C1 = $\frac{1}{2}$×$\sqrt{2}$A1B1 = $\frac{\sqrt{2}}{2}$,AO = $\frac{1}{2}$AC = $\frac{1}{2}$×$\sqrt{2}$AB = $\sqrt{2}$,故AM = AO - A1O1 = $\frac{\sqrt{2}}{2}$,则A1M = $\sqrt{A_{1}A^{2}-AM^{2}}$ = $\sqrt{2 - \frac{1}{2}}$ = $\frac{\sqrt{6}}{2}$,所以所求棱台的体积V = $\frac{1}{3}$×(4 + 1 + $\sqrt{4×1}$)×$\frac{\sqrt{6}}{2}$ = $\frac{7\sqrt{6}}{6}$.
答案 $\frac{7\sqrt{6}}{6}$
解析 如图,过A1作A1M⊥AC,垂足为M,易知A1M为正四棱台ABCD - A1B1C1D1的高. 因为AB = 2,A1B1 = 1,AA1 = $\sqrt{2}$,则A1O1 = $\frac{1}{2}$A1C1 = $\frac{1}{2}$×$\sqrt{2}$A1B1 = $\frac{\sqrt{2}}{2}$,AO = $\frac{1}{2}$AC = $\frac{1}{2}$×$\sqrt{2}$AB = $\sqrt{2}$,故AM = AO - A1O1 = $\frac{\sqrt{2}}{2}$,则A1M = $\sqrt{A_{1}A^{2}-AM^{2}}$ = $\sqrt{2 - \frac{1}{2}}$ = $\frac{\sqrt{6}}{2}$,所以所求棱台的体积V = $\frac{1}{3}$×(4 + 1 + $\sqrt{4×1}$)×$\frac{\sqrt{6}}{2}$ = $\frac{7\sqrt{6}}{6}$.
查看更多完整答案,请扫码查看