2025年真题圈八年级数学下册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年真题圈八年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年真题圈八年级数学下册北师大版》

7.(期末·22 - 23运城盐湖区)在△ABC中,
  
AB = AC = 6,∠B = 15°,则△ABC的
  面积为______.
答案:
9【解析】过点$C$作$CD\perp AB$交$BA$的延长线于点$D$,如图. $\because AB = AC = 6,\therefore \angle B=\angle ACB = 15^{\circ}$,$\therefore \angle CAD=\angle B+\angle ACB = 15^{\circ}+15^{\circ}=30^{\circ}$. $\because AC = 6,CD$是$AB$边上的高,$\therefore CD=\frac{1}{2}AC=\frac{1}{2}\times6 = 3,\therefore S_{\triangle ABC}=\frac{1}{2}\times6\times3 = 9$. 故答案为 9.
第7题答图
8.(期末·23 - 24运城盐湖区)如图,△ABC
                  第8题图 是等边三角形,点P为三角形内一点,连
  接PA,PB,PC,且PA = 2,PB = 1,PC
  = √5,则阴影部分的面积为______.
答案:
$1+\frac{\sqrt{3}}{4}$【解析】$\because \triangle ABC$为等边三角形,$\therefore BC = AB,\angle ABC = 60^{\circ}$. 如图,将$\triangle BCP$绕点$B$逆时针旋转$60^{\circ}$得到$\triangle BAP'$,连接$PP'$. 由旋转的性质,得$S_{\triangle BAP'}=S_{\triangle BCP},BP = BP' = 1,CP = AP'=\sqrt{5},\angle PBP' = 60^{\circ}$,$\therefore \triangle PBP'$为等边三角形,$\therefore PP' = 1$. $\because PP'^{2}+AP^{2}=1 + 4 = 5 = AP'^{2}$,$\therefore \triangle APP'$为直角三角形. 过点$B$作$BD\perp PP'$于$D$,则$DP=\frac{1}{2}PP'=\frac{1}{2},BD=\sqrt{BP^{2}-DP^{2}}=\frac{\sqrt{3}}{2}$,$\therefore S_{阴影}=S_{\triangle BCP}+S_{\triangle ABP}=S_{\triangle BAP'}+S_{\triangle ABP}=S_{\triangle APP'}+S_{\triangle BPP'}=\frac{1}{2}\times1\times2+\frac{1}{2}\times1\times\frac{\sqrt{3}}{2}=1+\frac{\sqrt{3}}{4}$. 故答案为$1+\frac{\sqrt{3}}{4}$.
第8题答图
9.情境题(期中·23 - 24运城盐湖区)城市绿化是城市重要的基础设施,是改善生态环境和提高广大人民群众生活质量的公益事业.某小区在社区管理人员及社区居民的共同努力之下,在临街清理出了一块可以绿化的空地(图中阴影部分).如图,已知∠BDC = 90°,AB = 6 m,AC = BD = 4 m,CD = 2 m,试求这块可绿化的空地的面积.
 c第9题图
答案: 【解】$\because \angle BDC = 90^{\circ},BD = 4m,CD = 2m$,$\therefore BC=\sqrt{BD^{2}+CD^{2}}=\sqrt{4^{2}+2^{2}}=2\sqrt{5}(m)$. $\because AB = 6m,AC = 4m$,$\therefore AC^{2}+BC^{2}=4^{2}+(2\sqrt{5})^{2}=16 + 20 = 36,AB^{2}=36$,$\therefore \triangle ACB$是直角三角形,$\angle ACB = 90^{\circ}$,$\therefore S_{阴影}=S_{\triangle ACB}-S_{\triangle BDC}=\frac{1}{2}\times4\times2\sqrt{5}-\frac{1}{2}\times4\times2=(4\sqrt{5}-4)(m^{2})$. 答:这块可绿化的空地的面积为$(4\sqrt{5}-4)m^{2}$.
10.(期中·23 - 24忻州)如图所示,在△ABC中,AB = BC,
DE⊥AB于点E,DF⊥BC于点D,交AC于F
  (1)若∠AFD = 155°,求∠EDF的度数.
(2)若点F是AC的中点,求证:∠CFD = 1/2∠B.
                 泞c第10题图
答案:

(1)【解】$\because \angle AFD = 155^{\circ},\therefore \angle DFC = 25^{\circ}$. $\because DF\perp BC,DE\perp AB,\therefore \angle FDC=\angle AED = 90^{\circ}$,$\therefore \angle C = 90^{\circ}-25^{\circ}=65^{\circ}$. $\because AB = BC,\therefore \angle C=\angle A = 65^{\circ}$,$\therefore \angle EDF = 360^{\circ}-65^{\circ}-155^{\circ}-90^{\circ}=50^{\circ}$.
(2)【证明】如图,连接$BF$. $\because AB = BC$,点$F$是$AC$的中点,$\therefore BF\perp AC,\angle ABF=\angle CBF=\frac{1}{2}\angle ABC$,$\therefore \angle CFD+\angle BFD = 90^{\circ}$. $\because \angle CBF+\angle BFD = 90^{\circ},\therefore \angle CFD=\angle CBF$,$\therefore \angle CFD=\frac{1}{2}\angle ABC$.
第10题答图

查看更多完整答案,请扫码查看

关闭