2025年真题圈八年级数学下册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年真题圈八年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年真题圈八年级数学下册北师大版》

1.(月考·23 - 24太原三十七中)如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB = 10 m,∠A = 30°,则立柱BC的长度是(   )
 
第1题图
A. 5 m    
 B. 8 m    
 C. 10 m   
 D. 20 m
答案: A【解析】$\because BC\perp AC,\angle A = 30^{\circ},\therefore BC=\frac{1}{2}AB=\frac{1}{2}\times10 = 5(m)$. 故选 A.
2.(期中·23 - 24晋中太谷区)如图,已知AB⊥AC,CD⊥AC,若用“HL”判定Rt△ABC和Rt△CDA全等,则需要添加的条件是(   )
 
A. ∠B = ∠D         B. ∠ACB = ∠CAD
 
C. AB = CD          D. CB = AD
CA第2题图
答案: D【解析】$\because AB\perp AC,CD\perp AC$,$\therefore \angle BAC=\angle DCA = 90^{\circ}$. 在$Rt\triangle ABC$和$Rt\triangle CDA$中,$AC = CA,CB = AD$,$\therefore Rt\triangle ABC\cong Rt\triangle CDA(HL)$. 故选 D.
3.(期中·23 - 24晋中榆次区)如图,在△ABC中,∠C = 90°,AB = 5,BC = 3,点D,E分别是边AC,BC上的点,连接DE,
DB,若DE//AB且DE平分∠CDB,则△CDB的周长为(   )
 
第3题图
A. 5     
 B. 7     
 C. 8     
 D. 9
答案: B【解析】$\because$在$\triangle ABC$中,$\angle C = 90^{\circ},AB = 5,BC = 3$,$\therefore AC = 4$. $\because DE// AB$且$DE$平分$\angle CDB$,$\therefore \angle A=\angle CDE=\frac{1}{2}\angle CDB,\angle ABD=\angle EDB=\frac{1}{2}\angle CDB$,$\therefore \angle A=\angle DBA,\therefore DA = DB$,$\therefore \triangle CDB$的周长为$CD + DB+BC = CD + DA+BC = AC+BC = 4 + 3 = 7$. 故选 B.
4.(月考·22 - 23太原五中)已知△ABC的三边长分别为a,b,c,下列条件不能判定△ABC是直角三角形的是(   )
 
A. a² = b² - c²         B. a = 6,b = 8,c = 10
 
C. ∠A = ∠B + ∠C       D. ∠A:∠B:∠C = 5:12:13
答案: D【解析】A.$\because a^{2}=b^{2}-c^{2},\therefore a^{2}+c^{2}=b^{2},\therefore \triangle ABC$是直角三角形;B.$\because a^{2}+b^{2}=6^{2}+8^{2}=100,c^{2}=10^{2}=100,\therefore a^{2}+b^{2}=c^{2},\therefore \triangle ABC$是直角三角形;C.$\because \angle A=\angle B+\angle C,\angle A+\angle B+\angle C = 180^{\circ},\therefore 2\angle A = 180^{\circ},\therefore \angle A = 90^{\circ},\therefore \triangle ABC$是直角三角形;D.$\because \angle A:\angle B:\angle C = 5:12:13,\angle A+\angle B+\angle C = 180^{\circ},\therefore \angle C = 180^{\circ}\times\frac{13}{5 + 12+13}=78^{\circ},\therefore \triangle ABC$不是直角三角形,故 D 符合题意. 故选 D.
5.(月考·22 - 23山西省实验)在如图所示的网格中,小正方形的边长均为1,△ABC的顶点A,B,C
 均在正方形格点上,则下列结论错误的
 是(   )
                  第5题图
A. AB² = 20
 
B. ∠BAC = 90°                 A
 
C. S△ABC = 10                第5题图
 
D. 点A到直线BC的距离是2
答案: C【解析】由题意,得$AC^{2}=1^{2}+2^{2}=5,BC^{2}=3^{2}+4^{2}=25,AB^{2}=2^{2}+4^{2}=20,\therefore AC^{2}+AB^{2}=BC^{2},\therefore \triangle ABC$是直角三角形,即$\angle BAC = 90^{\circ}$.$\because S_{\triangle ABC}=4\times4-\frac{1}{2}\times1\times2-\frac{1}{2}\times2\times4-\frac{1}{2}\times3\times4 = 5,\therefore$点$A$到直线$BC$的距离是$\frac{5}{\frac{1}{2}\times\sqrt{25}} = 2,\therefore$四个选项中,只有 C 选项结论错误. 故选 C.
6.(期中·22 - 23山大附中)在等腰三角形ABC中,AB = AC,∠A = 4∠B,则∠C = ______°.
答案: 30【解析】$\because$在等腰三角形$ABC$中,$AB = AC,\angle A = 4\angle B$,$\therefore \angle B=\angle C,\angle A = 4\angle C$. $\because \angle B+\angle C+\angle A = 180^{\circ}$,$\therefore \angle C+\angle C+4\angle C = 180^{\circ}$,$\therefore \angle C = 180^{\circ}\div(4 + 1+1)=180^{\circ}\div6 = 30^{\circ}$. 故答案为 30.

查看更多完整答案,请扫码查看

关闭