2025年黄冈状元成才路状元大课堂八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年黄冈状元成才路状元大课堂八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年黄冈状元成才路状元大课堂八年级数学下册人教版》

第130页
例8 ★★☆ [邹城期末]如图,在$\square ABCD$中,$\angle A = 45^{\circ}$,过点$D$作$DE\perp AD$交$AB$的延长线于点$E$,且$BE = AB$,连接$BD$,$CE$.
(1) 求证:四边形$BDCE$是正方形;
(2)$P$为线段$BC$上一点,点$M$,$N$在直线$AE$上,且$PM = PB$,$\angle DPN=\angle BPM$,求证:$AN=\sqrt{2}PB$.
BNE
思路分析
(2)证$\angle DBP=\angle NMP$
证$\angle DPB=\angle NPM$→$\triangle DBP\cong\triangle NMP$
$AN = BM$→$BD = MN = AB$
$AN=\sqrt{2}PB$
$BM=\sqrt{2}PB$→勾股定理
证明:(1)$\because$四边形$ABCD$是平行四边形,$\therefore AB = CD$,$AD = BC$,$AB// CD$,$AD// BC$.
$\because BE = AB$,$\therefore BE = CD$. 又$BE// CD$,$\therefore$四边形$BDCE$是平行四边形.
$\because DE\perp AD$,$AD// BC$,$\therefore BC\perp DE$,$\angle ADE = 90^{\circ}$,$\therefore\square BDCE$是菱形,$\angle DEA=\angle A = 45^{\circ}$,$\therefore AD = DE$,$\therefore BC = DE$,$\therefore$菱形$BDCE$是正方形.
(2)$\because$四边形$BDCE$是正方形,$\therefore BD = BE = AB$,$\angle DBP=\angle EBP = 45^{\circ}$.
$\because PM = PB$,$\therefore\angle PMB=\angle PBM = 45^{\circ}$,$\therefore\angle BPM = 180^{\circ}-\angle PBM-\angle PMB = 90^{\circ}$.
$\because\angle DPN=\angle BPM$,$\therefore\angle DPB=\angle NPM$.
在$\triangle DBP$和$\triangle NMP$中,
$\begin{cases}\angle DPB=\angle NPM,\\PB = PM,\\\angle DBP=\angle NMP = 45^{\circ},\end{cases}$
$\therefore\triangle DBP\cong\triangle NMP(ASA)$,$\therefore BD = MN$,$\therefore AB = MN$,线段的和差$\therefore AB + BN = MN + BN$,即$AN = BM$.
$\because PB = PM$,$\angle BPM = 90^{\circ}$,利用勾股定理找出线段间的数量关系$\therefore BM^{2}=PB^{2}+PM^{2}=2PB^{2}$,$\therefore BM=\sqrt{2}PB$,$\therefore AN=\sqrt{2}PB$.
答案:
8 - 1 ★★☆ 如图①,在$Rt\triangle AEB$中,$\angle AEB = 90^{\circ}$,以斜边$AB$为边在$Rt\triangle AEB$外作正方形$ABCD$,正方形的两条对角线相交于点$O$.
(1) 求证:$EO$平分$\angle AEB$;
(2) 试猜想线段$OE$与$AE$,$BE$之间的数量关系,请写出结论并证明;
(3) 如图②,过点$C$作$CF\perp BE$于点$F$,过点$D$作$DH\perp AE$于点$H$,$CF$和$DH$的反向延长线交于点$G$. 求证:四边形$EFGH$为正方形.
答案:
(1)证明:如图①,延长EA至点F,使AF = BE,连接OF.
AF
∵ 四边形ABCD是正方形,
∴ ∠AOB = 90°,BO = AO.
在四边形AEBO中,∠AEB + ∠AOB + ∠EBO + ∠EAO = 360°,
又∠AEB = 90°,
∴ ∠EBO + ∠EAO = 180°.
∵ ∠EAO + ∠FAO = 180°,
∴ ∠EBO = ∠FAO.
又BE = AF,
∴ △OBE≌△OAF(SAS),
∴ OE = OF,∠BEO = ∠AFO,
∴ ∠OEA = ∠AFO,
∴ ∠BEO = ∠OEA,
即EO平分∠AEB.
(2)解:AE + BE = $\sqrt{2}$OE. 证明如下:
由(1)知△OBE≌△OAF,
∴ ∠BOE = ∠AOF.
∴ ∠AOF + ∠AOE = ∠BOE + ∠AOE,
即∠EOF = ∠AOB = 90°.
又OE = OF,
∴ △EOF是等腰直角三角形,
∴ OE² + OF² = EF²,
即2OE² = (AE + AF)² = (AE + BE)²,
∴ AE + BE = $\sqrt{2}$OE.
(3)证明:
∵ CF⊥BE,DH⊥AE,
∴ ∠F = ∠H = ∠AEB = 90°.
∴ 四边形EFGH为矩形.
∵ 四边形ABCD是正方形,
∴ AB = DA,∠BAD = 90°,
∴ ∠EAB + ∠DAH = 90°.
∵ ∠EAB + ∠ABE = 90°,
∴ ∠ABE = ∠DAH,
∴ △ABE≌△DAH(AAS),
∴ BE = AH.
同理可证△ABE≌△BCF,
∴ AE = BF,
∴ AE + AH = BF + BE,即EH = EF,
∴ 矩形EFGH为正方形.

查看更多完整答案,请扫码查看

关闭