2025年黄冈状元成才路状元大课堂八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年黄冈状元成才路状元大课堂八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年黄冈状元成才路状元大课堂八年级数学下册人教版》

第117页
1-3 [宝鸡扶风县期末]如图,在$\square ABCD$中,$E$,$F$分别为$AB$,$CD$的中点,连接$DE$,$BF$,$BD$.若$AD\perp BD$,则四边形$BFDE$是什么特殊四边形?请证明你的结论.

答案: 解:四边形$BFDE$是菱形. 证明:
$\because AD\perp BD$,$E$为$AB$的中点,
$\therefore DE = BE = \frac{1}{2}AB$.
$\because$四边形$ABCD$是平行四边形,
$\therefore CD// AB$,$CD = AB$.
$\because F$为$CD$的中点,
$\therefore DF = \frac{1}{2}CD = \frac{1}{2}AB$,
$\therefore DF = BE$.
又$DF// BE$,
$\therefore$四边形$BFDE$是平行四边形.
$\because DE = BE$,
$\therefore\square BFDE$是菱形.
2-1 [黔东南州中考]如图,矩形$ABCD$的对角线$AC$,$BD$相交于点$O$,$DE// AC$,$CE// BD$.若$AC = 10$,则四边形$OCED$的周长是__________.
2−1题图
答案: 20
2-2 如图,$AD$是$\triangle ABC$的角平分线,$DE// AC$交$AB$于点$E$,$DF// AB$交$AC$于点$F$,$AD$交$EF$于点$O$,则$\angle AOF =$__________$^{\circ}$.
DC2−2题图
答案:
90 [解析]如图.
∵$DE// AC$,$DF// AB$,
∴四边形$AEDF$为平行四边形,$\angle 2 = \angle 3$.
∵$AD$是$\triangle ABC$的角平分线,
∴$\angle 1 = \angle 2$,
∴$\angle 1 = \angle 3$,
∴$AE = DE$.
∴$\square AEDF$为菱形,
∴$AD\perp EF$,
∴$\angle AOF = 90^{\circ}$.
DC
2-3 如图,在四边形$ABCD$中,$AB// CD$,$AB = AD$,对角线$AC$,$BD$交于点$O$,$AC$平分$\angle BAD$.求证:四边形$ABCD$是菱形.

答案: 证明:$\because AB// CD$,
$\therefore \angle BAC = \angle DCA$.
$\because AC$平分$\angle BAD$,
$\therefore \angle BAC = \angle DAC$,
$\therefore \angle DCA = \angle DAC$,
$\therefore CD = AD$.
$\because AB = AD$,$\therefore AB = CD$.
$\because AB// CD$,
$\therefore$四边形$ABCD$是平行四边形.
又$AB = AD$,
$\therefore\square ABCD$是菱形.
例2 [绵阳期末]如图,在四边形$ABCD$中,$AD// BC$,对角线$BD$垂直平分对角线$AC$,垂足为$O$.
(1)求证:四边形$ABCD$是菱形;
(2)若$\angle DBC = 30^{\circ}$,$BC = 2$,求四边形$ABCD$的面积.


(1)证明:$\because AD// BC$,$\therefore \angle ADO = \angle CBO$.
$\because$对角线$BD$垂直平分对角线$AC$,
$\therefore OA = OC$.
又$\angle AOD = \angle COB$,
$\therefore \triangle ADO\cong\triangle CBO(AAS)$,
$\therefore AD = CB$,
$\therefore$四边形$ABCD$是平行四边形.
又$BD\perp AC$,
$\therefore \square ABCD$是菱形.

(2)解:$\because BD\perp AC$,$\angle DBC = 30^{\circ}$,$BC = 2$,
$\therefore OC = \frac{1}{2}BC = 1$,$OB = \sqrt{BC^{2} - OC^{2}} = \sqrt{2^{2} - 1^{2}} = \sqrt{3}$,
$\therefore$菱形$ABCD$的面积$ = 4S_{\triangle BOC} = 4\times\frac{1}{2}OB\cdot OC = 4\times\frac{1}{2}\times\sqrt{3}\times1 = 2\sqrt{3}$.
答案:

查看更多完整答案,请扫码查看

关闭