2025年名校课堂八年级数学上册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第37页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
【例1】(2023·六安金安区期末节选)如图,直线$y_1 = -\frac{1}{2}x + 1$与直线$y_2 = 2x + 6$分别与$x$轴交于点$A$,$B$,两直线相交于点$P$.
(1)求直线$y_1$,$y_2$与$x$轴的交点坐标;
(2)求三角形$ABP$的面积.

(1)求直线$y_1$,$y_2$与$x$轴的交点坐标;
(2)求三角形$ABP$的面积.
答案:
(1)把y=0代入$y_1 = - \frac{1}{2}x + 1$中,得$- \frac{1}{2}x + 1 = 0$,解得$x = 2$.$\therefore A(2,0)$.把y=0代入$y_2 = 2x + 6$中,得$2x + 6 = 0$,解得$x = - 3$.$\therefore B(-3,0)$.
(2)由
(1)知,$A(2,0)$,$B(-3,0)$,$\therefore AB = 2 - (-3)=5$.解方程$- \frac{1}{2}x + 1 = 2x + 6$,得$x = - 2$.把$x = - 2$代入$y_1 = - \frac{1}{2}x + 1$中,得$y = 2$.$\therefore P(-2,2)$.$\therefore S_{\triangle ABP} = \frac{1}{2} × 5 × 2 = 5$.
(1)把y=0代入$y_1 = - \frac{1}{2}x + 1$中,得$- \frac{1}{2}x + 1 = 0$,解得$x = 2$.$\therefore A(2,0)$.把y=0代入$y_2 = 2x + 6$中,得$2x + 6 = 0$,解得$x = - 3$.$\therefore B(-3,0)$.
(2)由
(1)知,$A(2,0)$,$B(-3,0)$,$\therefore AB = 2 - (-3)=5$.解方程$- \frac{1}{2}x + 1 = 2x + 6$,得$x = - 2$.把$x = - 2$代入$y_1 = - \frac{1}{2}x + 1$中,得$y = 2$.$\therefore P(-2,2)$.$\therefore S_{\triangle ABP} = \frac{1}{2} × 5 × 2 = 5$.
1. (2024·合肥45中月考节选)如图,直线$l_1:y = -2x + 4$与$x$轴交于点$B$,$OB = OC$,直线$l_2:y = kx + b$经过点$C$,且与$l_1$交于点$A(1,2)$.
(1)求直线$l_2$的表达式;
(2)记直线$l_2$与$y$轴的交点为$D$,记直线$l_1$与$y$轴的交点为$E$,求三角形$ADE$的面积.

(1)求直线$l_2$的表达式;
(2)记直线$l_2$与$y$轴的交点为$D$,记直线$l_1$与$y$轴的交点为$E$,求三角形$ADE$的面积.
答案:
(1)$\because$直线$l_1$的表达式为$y = - 2x + 4$,当y=0时,x=2.$\therefore B(2,0)$.$\because OB = OC$,$\therefore C(-2,0)$.$\because l_2:y = kx + b$经过点C和点A,$\therefore \begin{cases} -2k + b = 0, \\k + b = 2,\end{cases}$解得$\begin{cases} k = \frac{2}{3}, \\b = \frac{4}{3}.\end{cases}$$\therefore$直线$l_2$的表达式为$y = \frac{2}{3}x + \frac{4}{3}$.
(2)把x=0代入$y = - 2x + 4$中,得y=4.$\therefore E(0,4)$.把x=0代入$y = \frac{2}{3}x + \frac{4}{3}$中,得$y = \frac{4}{3}$.$\therefore D(0,\frac{4}{3})$.$\therefore DE = 4 - \frac{4}{3} = \frac{8}{3}$.$\therefore S_{\triangle ADE} = \frac{1}{2} × \frac{8}{3} × 1 = \frac{4}{3}$.
(1)$\because$直线$l_1$的表达式为$y = - 2x + 4$,当y=0时,x=2.$\therefore B(2,0)$.$\because OB = OC$,$\therefore C(-2,0)$.$\because l_2:y = kx + b$经过点C和点A,$\therefore \begin{cases} -2k + b = 0, \\k + b = 2,\end{cases}$解得$\begin{cases} k = \frac{2}{3}, \\b = \frac{4}{3}.\end{cases}$$\therefore$直线$l_2$的表达式为$y = \frac{2}{3}x + \frac{4}{3}$.
(2)把x=0代入$y = - 2x + 4$中,得y=4.$\therefore E(0,4)$.把x=0代入$y = \frac{2}{3}x + \frac{4}{3}$中,得$y = \frac{4}{3}$.$\therefore D(0,\frac{4}{3})$.$\therefore DE = 4 - \frac{4}{3} = \frac{8}{3}$.$\therefore S_{\triangle ADE} = \frac{1}{2} × \frac{8}{3} × 1 = \frac{4}{3}$.
【例2】(2024·合肥45中期中)如图,在平面直角坐标系中,直线$m:y = -x + b$与直线$n:y = ax + 10(a \neq 0)$交于点$A(-1,5)$,直线$m$,$n$分别与$x$轴交于点$B$,$C$.
(1)求点$B$和点$C$的坐标;
(2)若直线$AC$上存在一点$P$,使得$S_{三角形ABP} = 30$,求点$P$的坐标.

(1)求点$B$和点$C$的坐标;
(2)若直线$AC$上存在一点$P$,使得$S_{三角形ABP} = 30$,求点$P$的坐标.
答案:
(1)$\because$直线$m:y = - x + b$与直线$n:y = ax + 10$交于点A(-1,5),$\therefore \begin{cases} 5 = -(-1) + b, \\5 = -a + 10,\end{cases}$解得$\begin{cases} a = 5, \\b = 4.\end{cases}$$\therefore$直线m的表达式为$y = - x + 4$,直线n的表达式为$y = 5x + 10$.由$0 = - x + 4$,得$x = 4$;由$0 = 5x + 10$,得$x = - 2$.$\therefore B(4,0)$,$C(-2,0)$.
(2)由
(1)可得,$BC = 4 - (-2)=6$.$\therefore S_{\triangle ABC} = \frac{1}{2}BC \cdot y_A = \frac{1}{2} × 6 × 5 = 15$.由
(1)知,直线AC的表达式为$y = 5x + 10$.设$P(p,5p + 10)$.分两种情况讨论:①如图1,当点P在CA的延长线上时,由条件可知,$S_{\triangle BCP} = S_{\triangle ABC} + S_{\triangle ABP} = 15 + 30 = 45$,$\therefore S_{\triangle BCP} = \frac{1}{2}BC \cdot |y_P| = \frac{1}{2} × 6 × (5p + 10) = 45$,解得$p = 1$.$\therefore P(1,15)$;②如图2,当点P在AC的延长线上时,由条件可知,$S_{\triangle BCP} = S_{\triangle ABP} - S_{\triangle ABC} = 15$,$\therefore S_{\triangle BCP} = \frac{1}{2}BC \cdot |y_P| = \frac{1}{2} × 6 × |5p + 10| = 15$,$\therefore |5p + 10| = 5$,解得$p = - 3$或$p = - 1$.当$p = - 1$时,$5p + 10 = 5 > 0$(不符合题意,舍去),$\therefore P(-3,-5)$.综上所述,点P的坐标为(1,15)或(-3,-5).
(1)$\because$直线$m:y = - x + b$与直线$n:y = ax + 10$交于点A(-1,5),$\therefore \begin{cases} 5 = -(-1) + b, \\5 = -a + 10,\end{cases}$解得$\begin{cases} a = 5, \\b = 4.\end{cases}$$\therefore$直线m的表达式为$y = - x + 4$,直线n的表达式为$y = 5x + 10$.由$0 = - x + 4$,得$x = 4$;由$0 = 5x + 10$,得$x = - 2$.$\therefore B(4,0)$,$C(-2,0)$.
(2)由
(1)可得,$BC = 4 - (-2)=6$.$\therefore S_{\triangle ABC} = \frac{1}{2}BC \cdot y_A = \frac{1}{2} × 6 × 5 = 15$.由
(1)知,直线AC的表达式为$y = 5x + 10$.设$P(p,5p + 10)$.分两种情况讨论:①如图1,当点P在CA的延长线上时,由条件可知,$S_{\triangle BCP} = S_{\triangle ABC} + S_{\triangle ABP} = 15 + 30 = 45$,$\therefore S_{\triangle BCP} = \frac{1}{2}BC \cdot |y_P| = \frac{1}{2} × 6 × (5p + 10) = 45$,解得$p = 1$.$\therefore P(1,15)$;②如图2,当点P在AC的延长线上时,由条件可知,$S_{\triangle BCP} = S_{\triangle ABP} - S_{\triangle ABC} = 15$,$\therefore S_{\triangle BCP} = \frac{1}{2}BC \cdot |y_P| = \frac{1}{2} × 6 × |5p + 10| = 15$,$\therefore |5p + 10| = 5$,解得$p = - 3$或$p = - 1$.当$p = - 1$时,$5p + 10 = 5 > 0$(不符合题意,舍去),$\therefore P(-3,-5)$.综上所述,点P的坐标为(1,15)或(-3,-5).
查看更多完整答案,请扫码查看