2025年名校课堂八年级数学上册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第38页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
2. (2024·合肥168中期末)如图,已知直线$l_1:y = kx - 2$与直线$y = x$平行,与$x$轴交于点$A$,与$y$轴交于点$B$.直线$l_2$与$y$轴交于点$C(0,4)$,与$x$轴交于点$D$,与直线$l_1$交于点$E(3,m)$.
(1)求直线$l_2$的表达式;
(2)求四边形$AOCE$的面积.

(1)求直线$l_2$的表达式;
(2)求四边形$AOCE$的面积.
答案:
(1)$\because$直线$l_1:y = kx - 2$与直线$y = x$平行,$\therefore k = 1$.$\therefore$直线$l_1$的表达式为$y = x - 2$.$\because$点$E(3,m)$在直线$l_1$上,$\therefore m = 3 - 2 = 1$.$\therefore E(3,1)$.设直线$l_2$的表达式为$y = ax + b$.把$C(0,4)$,$E(3,1)$代入,得$\begin{cases} b = 4, \\3a + b = 1,\end{cases}$解得$\begin{cases} a = - 1, \\b = 4.\end{cases}$$\therefore$直线$l_2$的表达式为$y = - x + 4$.
(2)在直线$l_1:y = x - 2$中,令y=0,则$x - 2 = 0$,解得$x = 2$.$\therefore A(2,0)$.在直线$l_2:y = - x + 4$中,令y=0,则$- x + 4 = 0$,解得$x = 4$.$\therefore D(4,0)$.$\therefore S_{\triangle COD} = \frac{1}{2} × 4 × 4 = 8$,$S_{\triangle AED} = \frac{1}{2} × (4 - 2) × 1 = 1$.$\therefore S_{四边形AOCE} = S_{\triangle COD} - S_{\triangle AED} = 8 - 1 = 7$.
(1)$\because$直线$l_1:y = kx - 2$与直线$y = x$平行,$\therefore k = 1$.$\therefore$直线$l_1$的表达式为$y = x - 2$.$\because$点$E(3,m)$在直线$l_1$上,$\therefore m = 3 - 2 = 1$.$\therefore E(3,1)$.设直线$l_2$的表达式为$y = ax + b$.把$C(0,4)$,$E(3,1)$代入,得$\begin{cases} b = 4, \\3a + b = 1,\end{cases}$解得$\begin{cases} a = - 1, \\b = 4.\end{cases}$$\therefore$直线$l_2$的表达式为$y = - x + 4$.
(2)在直线$l_1:y = x - 2$中,令y=0,则$x - 2 = 0$,解得$x = 2$.$\therefore A(2,0)$.在直线$l_2:y = - x + 4$中,令y=0,则$- x + 4 = 0$,解得$x = 4$.$\therefore D(4,0)$.$\therefore S_{\triangle COD} = \frac{1}{2} × 4 × 4 = 8$,$S_{\triangle AED} = \frac{1}{2} × (4 - 2) × 1 = 1$.$\therefore S_{四边形AOCE} = S_{\triangle COD} - S_{\triangle AED} = 8 - 1 = 7$.
3. (2024·六安裕安区期末)如图,一次函数$y = -\frac{4}{3}x + 4$的图象分别与$x$轴,$y$轴的正半轴交于点$A$,$B$,一次函数$y = kx - 4$的图象与直线$AB$交于点$C(m,2)$,且交$x$轴于点$D$.
(1)求$m$的值及点$A$,$B$的坐标;
(2)求三角形$ACD$的面积;
(3)若$P$是$x$轴上的一个动点,当$S_{三角形PCD} = \frac{1}{2}S_{三角形ACD}$时,求点$P$的坐标.

(1)求$m$的值及点$A$,$B$的坐标;
(2)求三角形$ACD$的面积;
(3)若$P$是$x$轴上的一个动点,当$S_{三角形PCD} = \frac{1}{2}S_{三角形ACD}$时,求点$P$的坐标.
答案:
(1)$\because$一次函数$y = - \frac{4}{3}x + 4$的图象经过点$C(m,2)$,$\therefore - \frac{4}{3}m + 4 = 2$,解得$m = \frac{3}{2}$.$\because$一次函数$y = - \frac{4}{3}x + 4$的图象分别与x轴,y轴的正半轴交于点A,B,$\therefore$当y=0时,$- \frac{4}{3}x + 4 = 0$,解得$x = 3$.$\therefore A(3,0)$.当x=0时,y=4,$\therefore B(0,4)$.
(2)把点$C(\frac{3}{2},2)$代入$y = kx - 4$,得$2 = \frac{3}{2}k - 4$,解得$k = 4$.$\therefore$直线CD的表达式为$y = 4x - 4$.当y=0时,x=1,即$D(1,0)$.$\therefore AD = 3 - 1 = 2$.$\therefore S_{\triangle ACD} = \frac{1}{2} × 2 × 2 = 2$.
(3)设$P(a,0)$.$\therefore PD = |a - 1|$.$\because S_{\triangle PCD} = \frac{1}{2}S_{\triangle ACD}$,$\therefore \frac{1}{2} × |a - 1| × 2 = \frac{1}{2} × 2$.$\therefore a = 2$或$a = 0$.$\therefore$点P的坐标为(2,0)或(0,0).
(1)$\because$一次函数$y = - \frac{4}{3}x + 4$的图象经过点$C(m,2)$,$\therefore - \frac{4}{3}m + 4 = 2$,解得$m = \frac{3}{2}$.$\because$一次函数$y = - \frac{4}{3}x + 4$的图象分别与x轴,y轴的正半轴交于点A,B,$\therefore$当y=0时,$- \frac{4}{3}x + 4 = 0$,解得$x = 3$.$\therefore A(3,0)$.当x=0时,y=4,$\therefore B(0,4)$.
(2)把点$C(\frac{3}{2},2)$代入$y = kx - 4$,得$2 = \frac{3}{2}k - 4$,解得$k = 4$.$\therefore$直线CD的表达式为$y = 4x - 4$.当y=0时,x=1,即$D(1,0)$.$\therefore AD = 3 - 1 = 2$.$\therefore S_{\triangle ACD} = \frac{1}{2} × 2 × 2 = 2$.
(3)设$P(a,0)$.$\therefore PD = |a - 1|$.$\because S_{\triangle PCD} = \frac{1}{2}S_{\triangle ACD}$,$\therefore \frac{1}{2} × |a - 1| × 2 = \frac{1}{2} × 2$.$\therefore a = 2$或$a = 0$.$\therefore$点P的坐标为(2,0)或(0,0).
查看更多完整答案,请扫码查看