2025年名校课堂八年级数学上册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第111页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
1. 如图,在四边形 $ABCD$ 中,$AD // BC$,$\angle A = 90^{\circ}$,$BD = BC$,$CE \perp BD$ 于点 $E$。求证:$AD = BE$。

答案:
证明:$\because AD// BC$,$\therefore \angle ADB = \angle DBC$。又$\because CE\perp BD$,$\therefore \angle BEC = 90^{\circ}$。$\because \angle A = 90^{\circ}$,$\therefore \angle A = \angle BEC$。又$\because BD = CB$,$\therefore \triangle ABD \cong \triangle ECB(AAS)$。$\therefore AD = EB$。
2. 如图,$AD$ 是 $\triangle ABC$ 的中线,$BE \perp AD$,垂足为 $E$,$CF \perp AD$,交 $AD$ 的延长线于点 $F$,$G$ 是 $DA$ 延长线上一点,连接 $BG$。
(1) 求证:$BE = CF$;
(2) 若 $BG = CA$,求证:$GA = 2DE$。

(1) 求证:$BE = CF$;
(2) 若 $BG = CA$,求证:$GA = 2DE$。
答案:
(1)$\because AD$是$\triangle ABC$的中线,$\therefore BD = CD$。$\because BE\perp AD$,$CF\perp AD$,$\therefore \angle BED = \angle F = 90^{\circ}$。在$\triangle BED$和$\triangle CFD$中,$\begin{cases} \angle BED = \angle F \\ \angle BDE = \angle CDF \\ BD = CD \end{cases}$,$\therefore \triangle BED \cong \triangle CFD(AAS)$。$\therefore BE = CF$。
(2)在$Rt\triangle BGE$和$Rt\triangle CAF$中,$\begin{cases} BG = CA \\ BE = CF \end{cases}$,$\therefore Rt\triangle BGE \cong Rt\triangle CAF(HL)$。$\therefore GE = AF$。$\therefore AG = EF$。$\because \triangle BED \cong \triangle CFD$,$\therefore DE = DF$。$\therefore GA = 2DE$。
(1)$\because AD$是$\triangle ABC$的中线,$\therefore BD = CD$。$\because BE\perp AD$,$CF\perp AD$,$\therefore \angle BED = \angle F = 90^{\circ}$。在$\triangle BED$和$\triangle CFD$中,$\begin{cases} \angle BED = \angle F \\ \angle BDE = \angle CDF \\ BD = CD \end{cases}$,$\therefore \triangle BED \cong \triangle CFD(AAS)$。$\therefore BE = CF$。
(2)在$Rt\triangle BGE$和$Rt\triangle CAF$中,$\begin{cases} BG = CA \\ BE = CF \end{cases}$,$\therefore Rt\triangle BGE \cong Rt\triangle CAF(HL)$。$\therefore GE = AF$。$\therefore AG = EF$。$\because \triangle BED \cong \triangle CFD$,$\therefore DE = DF$。$\therefore GA = 2DE$。
3. 如图,在 $\triangle ABC$ 中,过点 $C$ 作 $\angle BAC$ 的平分线 $AD$ 的垂线,垂足为 $D$,作 $DE // AB$,交 $AC$ 于点 $E$。求证:$AE = CE$。

答案:
证明:$\because AD$是$\angle BAC$的平分线,$\therefore \angle BAD = \angle DAE$。$\because DE// AB$,$\therefore \angle ADE = \angle BAD$。$\therefore \angle DAE = \angle ADE$。$\therefore AE = DE$。$\because AD\perp CD$,$\therefore \angle CAD + \angle ACD = 90^{\circ}$,$\angle ADE + \angle EDC = 90^{\circ}$。$\because \angle EDA = \angle EAD$,$\therefore \angle EDC = \angle ACD$。$\therefore DE = CE$。$\therefore AE = CE$。
4. (2024·安庆期末) 如图,$CD$ 为 $Rt\triangle ABC$ 斜边上的高,$\angle BAC$ 的平分线分别交 $CD$,$BC$ 于点 $E$,$F$,$FG \perp AB$,垂足为 $G$。
(1) 求证:$CE = FG$;
(2) 若 $AC = 12$,$AB = 15$,$CE = 4$,求 $\triangle ABC$ 的面积。

(1) 求证:$CE = FG$;
(2) 若 $AC = 12$,$AB = 15$,$CE = 4$,求 $\triangle ABC$ 的面积。
答案:
(1)证明:$\because AF$是$\angle BAC$的平分线,$\angle ACB = 90^{\circ}$,$FG\perp AB$,$CD\perp AB$,$\therefore FC = FG$,$\angle CAF = \angle DAE = \frac{1}{2}\angle BAC$,$\angle CAF + \angle CFA = 90^{\circ}$,$\angle DAE + \angle AED = 90^{\circ}$。$\therefore \angle AED = \angle AFC$。$\because \angle AED = \angle CEF$,$\therefore \angle CEF = \angle AFC$。$\therefore CE = CF$。$\therefore CE = FG$。
(2)$\because CE = 4$,$\therefore FG = CF = CE = 4$。$\because AC = 12$,$AB = 15$,$\therefore S_{\triangle ABC} = S_{\triangle ACF} + S_{\triangle ABF} = \frac{1}{2}AC\cdot CF + \frac{1}{2}AB\cdot FG = \frac{1}{2} × 12 × 4 + \frac{1}{2} × 15 × 4 = 54$。
(1)证明:$\because AF$是$\angle BAC$的平分线,$\angle ACB = 90^{\circ}$,$FG\perp AB$,$CD\perp AB$,$\therefore FC = FG$,$\angle CAF = \angle DAE = \frac{1}{2}\angle BAC$,$\angle CAF + \angle CFA = 90^{\circ}$,$\angle DAE + \angle AED = 90^{\circ}$。$\therefore \angle AED = \angle AFC$。$\because \angle AED = \angle CEF$,$\therefore \angle CEF = \angle AFC$。$\therefore CE = CF$。$\therefore CE = FG$。
(2)$\because CE = 4$,$\therefore FG = CF = CE = 4$。$\because AC = 12$,$AB = 15$,$\therefore S_{\triangle ABC} = S_{\triangle ACF} + S_{\triangle ABF} = \frac{1}{2}AC\cdot CF + \frac{1}{2}AB\cdot FG = \frac{1}{2} × 12 × 4 + \frac{1}{2} × 15 × 4 = 54$。
查看更多完整答案,请扫码查看