2025年综合应用创新题典中点九年级数学下册鲁教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点九年级数学下册鲁教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第59页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
1. 下列方程最适合用公式法求解的是 ( )
A. $(x - 3)^2 = 2$
B. $x^2 - 10x + 25 = 0$
C. $x^2 + 5x = 0$
D. $2x^2 + 3x - 1 = 0$
A. $(x - 3)^2 = 2$
B. $x^2 - 10x + 25 = 0$
C. $x^2 + 5x = 0$
D. $2x^2 + 3x - 1 = 0$
答案:
D
2. 方程$x^2 + 3x = 14$的解是 ( )
A. $x = \frac{3 \pm \sqrt{65}}{2}$
B. $x = \frac{-3 \pm \sqrt{65}}{2}$
C. $x = \frac{3 \pm \sqrt{23}}{2}$
D. $x = \frac{-3 \pm \sqrt{23}}{2}$
A. $x = \frac{3 \pm \sqrt{65}}{2}$
B. $x = \frac{-3 \pm \sqrt{65}}{2}$
C. $x = \frac{3 \pm \sqrt{23}}{2}$
D. $x = \frac{-3 \pm \sqrt{23}}{2}$
答案:
B
3. 将方程$1 + \sqrt{3}t = \sqrt{3}t^2 + 2t$整理成一般形式后,求得$\sqrt{b^2 - 4ac} =$ ( )
A. 2
B. $\sqrt{5}$
C. $\sqrt{6}$
D. $\sqrt{7}$
A. 2
B. $\sqrt{5}$
C. $\sqrt{6}$
D. $\sqrt{7}$
答案:
D
4. [2024·菏泽模拟]方程$mx^2 - 4x + 1 = 0(m < 0)$的根是 ( )
A. $\frac{1}{4}$
B. $\frac{2 \pm \sqrt{4 - m}}{m}$
C. $\frac{2 \pm 2\sqrt{4 - m}}{m}$
D. $\frac{2 \pm m\sqrt{4 - m}}{m}$
A. $\frac{1}{4}$
B. $\frac{2 \pm \sqrt{4 - m}}{m}$
C. $\frac{2 \pm 2\sqrt{4 - m}}{m}$
D. $\frac{2 \pm m\sqrt{4 - m}}{m}$
答案:
B
5. [2024·广州天河中学期末]如果$2x^2 + 1$与$-x^2 - 2x - 4$互为相反数,那么$x$的值为________.
答案:
-1或3
6. 用公式法解下列一元二次方程:
(1)$3x^2 + 5(2x + 1) = 0$;
(2)$2x^2 - 3\sqrt{3}x + 3 = 0$;
(3)$(x + 1)(x - 1) = 2\sqrt{2}x$;
(4)$2(x - 1)^2 - (x + 1)(1 - x) = (x + 2)^2$.
(1)$3x^2 + 5(2x + 1) = 0$;
(2)$2x^2 - 3\sqrt{3}x + 3 = 0$;
(3)$(x + 1)(x - 1) = 2\sqrt{2}x$;
(4)$2(x - 1)^2 - (x + 1)(1 - x) = (x + 2)^2$.
答案:
【解】
(1)$3x^{2}+5(2x + 1)=0$,
整理,得$3x^{2}+10x + 5 = 0$,
$\because a = 3,b = 10,c = 5$,
$\therefore b^{2}-4ac=10^{2}-4\times3\times5 = 40>0$.
$\therefore x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{-10\pm2\sqrt{10}}{6}=\frac{-5\pm\sqrt{10}}{3}$.
$\therefore x_{1}=\frac{-5+\sqrt{10}}{3},x_{2}=\frac{-5-\sqrt{10}}{3}$.
(2)$2x^{2}-3\sqrt{3}x + 3 = 0$,
$\because a = 2,b=-3\sqrt{3},c = 3$,
$\therefore b^{2}-4ac=(-3\sqrt{3})^{2}-4\times2\times3 = 3>0$.
$\therefore x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{3\sqrt{3}\pm\sqrt{3}}{4}$.$\therefore x_{1}=\sqrt{3},x_{2}=\frac{\sqrt{3}}{2}$.
(3)原方程化为$x^{2}-2\sqrt{2}x - 1 = 0$,
$\because a = 1,b=-2\sqrt{2},c=-1$,$\therefore b^{2}-4ac=(-2\sqrt{2})^{2}-4\times1\times(-1)=12>0$.
$\therefore x=\frac{2\sqrt{2}\pm\sqrt{12}}{2}=\frac{2\sqrt{2}\pm2\sqrt{3}}{2}=\sqrt{2}\pm\sqrt{3}$.
$\therefore x_{1}=\sqrt{2}+\sqrt{3},x_{2}=\sqrt{2}-\sqrt{3}$.
(4)原方程化为$2x^{2}-8x - 3 = 0$,
$\because a = 2,b=-8,c=-3$,$\therefore b^{2}-4ac=(-8)^{2}-4\times2\times(-3)=88>0$.
$\therefore x=\frac{8\pm\sqrt{88}}{2\times2}=\frac{4\pm\sqrt{22}}{2}$.
$\therefore x_{1}=\frac{4+\sqrt{22}}{2},x_{2}=\frac{4-\sqrt{22}}{2}$.
(1)$3x^{2}+5(2x + 1)=0$,
整理,得$3x^{2}+10x + 5 = 0$,
$\because a = 3,b = 10,c = 5$,
$\therefore b^{2}-4ac=10^{2}-4\times3\times5 = 40>0$.
$\therefore x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{-10\pm2\sqrt{10}}{6}=\frac{-5\pm\sqrt{10}}{3}$.
$\therefore x_{1}=\frac{-5+\sqrt{10}}{3},x_{2}=\frac{-5-\sqrt{10}}{3}$.
(2)$2x^{2}-3\sqrt{3}x + 3 = 0$,
$\because a = 2,b=-3\sqrt{3},c = 3$,
$\therefore b^{2}-4ac=(-3\sqrt{3})^{2}-4\times2\times3 = 3>0$.
$\therefore x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{3\sqrt{3}\pm\sqrt{3}}{4}$.$\therefore x_{1}=\sqrt{3},x_{2}=\frac{\sqrt{3}}{2}$.
(3)原方程化为$x^{2}-2\sqrt{2}x - 1 = 0$,
$\because a = 1,b=-2\sqrt{2},c=-1$,$\therefore b^{2}-4ac=(-2\sqrt{2})^{2}-4\times1\times(-1)=12>0$.
$\therefore x=\frac{2\sqrt{2}\pm\sqrt{12}}{2}=\frac{2\sqrt{2}\pm2\sqrt{3}}{2}=\sqrt{2}\pm\sqrt{3}$.
$\therefore x_{1}=\sqrt{2}+\sqrt{3},x_{2}=\sqrt{2}-\sqrt{3}$.
(4)原方程化为$2x^{2}-8x - 3 = 0$,
$\because a = 2,b=-8,c=-3$,$\therefore b^{2}-4ac=(-8)^{2}-4\times2\times(-3)=88>0$.
$\therefore x=\frac{8\pm\sqrt{88}}{2\times2}=\frac{4\pm\sqrt{22}}{2}$.
$\therefore x_{1}=\frac{4+\sqrt{22}}{2},x_{2}=\frac{4-\sqrt{22}}{2}$.
7. [2024·辽阳模拟]若方程$(m - 2)x^{|m|} - 2x + 1 = 0$是一元二次方程,则方程的根是 ( )
A. $x_1 = \frac{-1 + \sqrt{5}}{2},x_2 = \frac{-1 - \sqrt{5}}{2}$
B. $x_1 = \frac{\sqrt{5} - 1}{4},x_2 = \frac{-\sqrt{5} - 1}{4}$
C. $x_1 = \frac{1 + \sqrt{5}}{2},x_2 = \frac{1 - \sqrt{5}}{2}$
D. 以上答案都不对
A. $x_1 = \frac{-1 + \sqrt{5}}{2},x_2 = \frac{-1 - \sqrt{5}}{2}$
B. $x_1 = \frac{\sqrt{5} - 1}{4},x_2 = \frac{-\sqrt{5} - 1}{4}$
C. $x_1 = \frac{1 + \sqrt{5}}{2},x_2 = \frac{1 - \sqrt{5}}{2}$
D. 以上答案都不对
答案:
B 【点拨】$\because$方程$(m - 2)x^{|m|}-2x + 1 = 0$是一元二次方程,$\therefore \begin{cases}|m| = 2\\m - 2\neq0\end{cases}$,解得$m = -2$.
$\therefore$方程为$-4x^{2}-2x + 1 = 0$,即$4x^{2}+2x - 1 = 0$.
$\because a = 4,b = 2,c = -1$,
$\therefore b^{2}-4ac=2^{2}-4\times4\times(-1)=20>0$.
$\therefore x=\frac{-2\pm\sqrt{20}}{8}=\frac{-1\pm\sqrt{5}}{4}$.
$\therefore x_{1}=\frac{-1 + \sqrt{5}}{4},x_{2}=\frac{-1 - \sqrt{5}}{4}$.
$\therefore$方程为$-4x^{2}-2x + 1 = 0$,即$4x^{2}+2x - 1 = 0$.
$\because a = 4,b = 2,c = -1$,
$\therefore b^{2}-4ac=2^{2}-4\times4\times(-1)=20>0$.
$\therefore x=\frac{-2\pm\sqrt{20}}{8}=\frac{-1\pm\sqrt{5}}{4}$.
$\therefore x_{1}=\frac{-1 + \sqrt{5}}{4},x_{2}=\frac{-1 - \sqrt{5}}{4}$.
8. 新视角 新定义题 对于两个不相等的实数$a,b$,我们规定符号$\max\{a,b\}$表示$a,b$中的较大值,如:$\max\{2,5\} = 5$. 按照这个规定,方程$\max\{1,x\} = x^2 - 3$的根为______________.
答案:
$x = -2$或$x=\frac{1+\sqrt{13}}{2}$
【点拨】当$x < 1$时,方程$\max\{1,x\}=x^{2}-3$为$x^{2}-3 = 1$,即$x^{2}=4$,解得$x_{1}=2$(不合题意,舍去),$x=-2$.当$x > 1$时,方程$\max\{1,x\}=x^{2}-3$为$x^{2}-3 = x$,即$x^{2}-x - 3 = 0$,解得$x_{1}=\frac{1+\sqrt{13}}{2}$,$x_{2}=\frac{1 - \sqrt{13}}{2}$(不合题意,舍去).综上,$x = -2$或$x=\frac{1+\sqrt{13}}{2}$.
【点拨】当$x < 1$时,方程$\max\{1,x\}=x^{2}-3$为$x^{2}-3 = 1$,即$x^{2}=4$,解得$x_{1}=2$(不合题意,舍去),$x=-2$.当$x > 1$时,方程$\max\{1,x\}=x^{2}-3$为$x^{2}-3 = x$,即$x^{2}-x - 3 = 0$,解得$x_{1}=\frac{1+\sqrt{13}}{2}$,$x_{2}=\frac{1 - \sqrt{13}}{2}$(不合题意,舍去).综上,$x = -2$或$x=\frac{1+\sqrt{13}}{2}$.
查看更多完整答案,请扫码查看