2025年综合应用创新题典中点九年级数学下册鲁教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点九年级数学下册鲁教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第21页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
1. 如图,在菱形ABCD中,∠B = 40°,点E是AB边上一点,将△BEC沿直线CE翻折,点B恰好落在边DA延长线上的F处,则∠BCE的度数是( )
A. 20° B. 25° C. 30° D. 35°

A. 20° B. 25° C. 30° D. 35°
答案:
A 【点拨】
∵四边形ABCD是菱形,
∴∠D = ∠B = 40°,BC = CD,AD//BC.
由翻折知CF = BC,∠BCE = ∠FCE = $\frac{1}{2}$∠BCF,
∴CD = CF.
∴∠CFD = ∠D = 40°.
∵AD//BC,
∴∠BCF = ∠CFD = 40°.
∴∠BCE = $\frac{1}{2}$∠BCF = 20°.
∵四边形ABCD是菱形,
∴∠D = ∠B = 40°,BC = CD,AD//BC.
由翻折知CF = BC,∠BCE = ∠FCE = $\frac{1}{2}$∠BCF,
∴CD = CF.
∴∠CFD = ∠D = 40°.
∵AD//BC,
∴∠BCF = ∠CFD = 40°.
∴∠BCE = $\frac{1}{2}$∠BCF = 20°.
2. [2024·保定莲池区期末] 如图,正方形ABCD中,AB = 6,将△ADE沿直线AE对折至△AFE,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是( )
A. 1 B. 1.5
C. 2 D. 2.5

A. 1 B. 1.5
C. 2 D. 2.5
答案:
C 【点拨】如图,连接AG,
∵四边形ABCD是正方形,
∴AD = CD = BC = AB = 6,∠B = ∠C = ∠D = 90°.
由折叠得DE = EF,AD = AF,∠AFE = ∠D = 90°,
∴∠B = ∠AFG = 90°,AF = AB.
又
∵AG = AG,

∴Rt△ABG≌Rt△AFG(HL).
∴BG = GF.
又
∵G是BC边的中点,
∴GF = BG = GC = 3.
设EF = DE = x,则CE = 6 - x,
GE = GF + EF = 3 + x.
在Rt△ECG中,由勾股定理得CE² + CG² = GE²,
∴(6 - x)² + 3² = (3 + x)²,解得x = 2,即ED的长是2.
C 【点拨】如图,连接AG,
∵四边形ABCD是正方形,
∴AD = CD = BC = AB = 6,∠B = ∠C = ∠D = 90°.
由折叠得DE = EF,AD = AF,∠AFE = ∠D = 90°,
∴∠B = ∠AFG = 90°,AF = AB.
又
∵AG = AG,
∴Rt△ABG≌Rt△AFG(HL).
∴BG = GF.
又
∵G是BC边的中点,
∴GF = BG = GC = 3.
设EF = DE = x,则CE = 6 - x,
GE = GF + EF = 3 + x.
在Rt△ECG中,由勾股定理得CE² + CG² = GE²,
∴(6 - x)² + 3² = (3 + x)²,解得x = 2,即ED的长是2.
3. [2024·威海] 如图,将一张矩形纸片(四边形ABCD)按如图所示的方式对折,使点C落在AB上的点C'处,折痕为MN,点D落在点D'处,C'D'交AD于点E. 若BM = 3,BC' = 4,AC' = 3,则DN = ________.

答案:
$\frac{3}{2}$ 【点拨】在矩形ABCD中,∠A = ∠B = ∠C = ∠D = 90°,AB = CD,AD = BC. 在Rt△C'BM中,C'M = $\sqrt{C'B^{2}+BM^{2}}=\sqrt{4^{2}+3^{2}} = 5$.
由折叠可得CM = C'M = 5,D'N = DN,C'D' = CD,
∠D'C'M = ∠D' = ∠D = ∠C = 90°,
∴∠BC'M + ∠AC'E = 90°.
∵∠A = 90°,
∴∠AEC' + ∠AC'E = 90°.
∴∠BC'M = ∠AEC'.
又
∵AC' = BM = 3,∠A = ∠B,
∴△BC'M≌△AEC'.
∴AE = BC' = 4,C'E = MC' = 5.
∵C'D' = CD = AB = 7,AD = BC = BM + CM = 3 + 5 = 8,
∴DE = AD - AE = 8 - 4 = 4,D'E = C'D' - C'E = 7 - 5 = 2.
设D'N = DN = a,则EN = 4 - a.
在Rt△D'EN中,NE² = D'E² + D'N²,即
(4 - a)² = 2² + a²,解得a = $\frac{3}{2}$,即DN = $\frac{3}{2}$.
由折叠可得CM = C'M = 5,D'N = DN,C'D' = CD,
∠D'C'M = ∠D' = ∠D = ∠C = 90°,
∴∠BC'M + ∠AC'E = 90°.
∵∠A = 90°,
∴∠AEC' + ∠AC'E = 90°.
∴∠BC'M = ∠AEC'.
又
∵AC' = BM = 3,∠A = ∠B,
∴△BC'M≌△AEC'.
∴AE = BC' = 4,C'E = MC' = 5.
∵C'D' = CD = AB = 7,AD = BC = BM + CM = 3 + 5 = 8,
∴DE = AD - AE = 8 - 4 = 4,D'E = C'D' - C'E = 7 - 5 = 2.
设D'N = DN = a,则EN = 4 - a.
在Rt△D'EN中,NE² = D'E² + D'N²,即
(4 - a)² = 2² + a²,解得a = $\frac{3}{2}$,即DN = $\frac{3}{2}$.
4. [2024·河南] 如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为(-2,0),点E在边CD上. 将△BCE沿BE折叠,点C落在点F处. 若点F的坐标为(0,6),则点E的坐标为________.
答案:
(3,10)
5. 如图①,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)如图②,过点D作DG//BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AD = AB + 2,BD = 10,求四边形BFDG的面积.
(1)求证:△BDF是等腰三角形;
(2)如图②,过点D作DG//BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AD = AB + 2,BD = 10,求四边形BFDG的面积.
答案:
(1)【证明】根据折叠,得∠DBC = ∠DBE.
又
∵矩形ABCD中,AD//BC,
∴∠DBC = ∠ADB.
∴∠DBE = ∠ADB.
∴DF = BF.
∴△BDF是等腰三角形.
(2)【解】①四边形BFDG是菱形.
理由如下:
∵四边形ABCD是矩形,
∴AD//BC.
∴FD//BG.
又
∵DG//BF,
∴四边形BFDG是平行四边形.
由
(1)知DF = BF,
∴四边形BFDG是菱形.
②在Rt△ABD中,AD = AB + 2,BD = 10,且BD² = AD² + AB²,
∴10² = (AB + 2)² + AB²,
∴AB = 6,
∴AD = 8.
∵BF² = AF² + AB²,DF = BF,
∴DF² = (8 - DF)² + 6²,解得DF = $\frac{25}{4}$,
∴四边形BFDG的面积为$\frac{25}{4}\times6=\frac{75}{2}$.
(1)【证明】根据折叠,得∠DBC = ∠DBE.
又
∵矩形ABCD中,AD//BC,
∴∠DBC = ∠ADB.
∴∠DBE = ∠ADB.
∴DF = BF.
∴△BDF是等腰三角形.
(2)【解】①四边形BFDG是菱形.
理由如下:
∵四边形ABCD是矩形,
∴AD//BC.
∴FD//BG.
又
∵DG//BF,
∴四边形BFDG是平行四边形.
由
(1)知DF = BF,
∴四边形BFDG是菱形.
②在Rt△ABD中,AD = AB + 2,BD = 10,且BD² = AD² + AB²,
∴10² = (AB + 2)² + AB²,
∴AB = 6,
∴AD = 8.
∵BF² = AF² + AB²,DF = BF,
∴DF² = (8 - DF)² + 6²,解得DF = $\frac{25}{4}$,
∴四边形BFDG的面积为$\frac{25}{4}\times6=\frac{75}{2}$.
6. 如图,菱形ABCD的对角线AC,BD交于点O,AC = 4,BD = 16,将△ABO沿点A到点C的方向平移,得到△A'B'O',当点A'与点C重合时,点A与点B'之间的距离为( )
A. 6 B. 8 C. 10 D. 12
A. 6 B. 8 C. 10 D. 12
答案:
C 【点拨】如图,连接AB'.
∵四边形ABCD是菱形,
AC = 4,BD = 16,

∴AC⊥BD,AO = OC = $\frac{1}{2}$AC = 2,OB = OD = $\frac{1}{2}$BD = 8.
∴∠AOB = 90°.
由平移知O'C = OA = 2,O'B' = OB = 8,∠CO'B' = ∠AOB = 90°,
∴AO' = AC + O'C = 6.
∴AB' = $\sqrt{O'B'^{2}+AO'^{2}}=\sqrt{8^{2}+6^{2}} = 10$.
C 【点拨】如图,连接AB'.
∵四边形ABCD是菱形,
AC = 4,BD = 16,
∴AC⊥BD,AO = OC = $\frac{1}{2}$AC = 2,OB = OD = $\frac{1}{2}$BD = 8.
∴∠AOB = 90°.
由平移知O'C = OA = 2,O'B' = OB = 8,∠CO'B' = ∠AOB = 90°,
∴AO' = AC + O'C = 6.
∴AB' = $\sqrt{O'B'^{2}+AO'^{2}}=\sqrt{8^{2}+6^{2}} = 10$.
查看更多完整答案,请扫码查看