第79页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
12. 先化简,再求值:$-\frac {1}{2}x^{2}(2xy^{2}-4x^{2}y^{2})-4x^{2}y\cdot (-xy)$,其中$x$,$y$满足$(x-2)^{2}+|y+1|=0$.
答案:
12.解:原式$=3x^3y^2 + 2x^4y^2. \because (x - 2)^2 + $|y + 1|$ = 0, \therefore x = 2, y = -1, \therefore$原式=56.
13. 已知$(a^{m+1}b^{n+2})(a^{2n-1}b^{2m})=a^{5}b^{3}$,求$m^{n}$的值.
答案:
13.解:$\because (a^{m + 1}b^{n + 2})(a^{2n - 1}b^{2m}) = a^{m + 2n} \cdot b^{2m + n + 2} = a^5b^3, \therefore \begin{cases}m + 2n = 5, \\2m + n + 2 = 3,\end{cases}$解得$\begin{cases}m = -1, \\n = 3,\end{cases} \therefore m^n = (-1)^3 = -1.$
14. 两个完全相同的长方形按如图所示的方式放置,每个长方形的面积均为 28,图中阴影部分的面积为 20,求长方形的周长.

[img]
[img]
答案:
14.解:设长方形的长为a,宽为b,则$ab = 28. \because$阴影部分的面积为$20, \therefore 28 × 2 - \frac{1}{2}(a + b)b - \frac{1}{2}ab = 20, \therefore 56 - \frac{1}{2}ab - \frac{1}{2}b^2 - \frac{1}{2}ab = 20, \therefore 56 - ab - \frac{1}{2}b^2 = 20, \therefore 56 - 28 - \frac{1}{2}b^2 = 20, \therefore b^2 = 16,$解得b = 4或b = -4(舍去),$\therefore a = 28 ÷ 4 = 7, \therefore (4 + 7) × 2 = 22,$即长方形的周长为22.
15. 已知$-2x^{3m+1}y^{2n}$与$4x^{n-2}y^{6-m}$的积与$-4x^{4}y^{2}$是同类项.
(1)求$m$,$n$的值;
(2)先化简,再求值:$5m^{3}n\cdot (-3n)^{2}+(-6mn)^{2}\cdot (-mn)-mn^{3}\cdot (-4m)^{2}$.
(1)求$m$,$n$的值;
(2)先化简,再求值:$5m^{3}n\cdot (-3n)^{2}+(-6mn)^{2}\cdot (-mn)-mn^{3}\cdot (-4m)^{2}$.
答案:
15.解:$(1) -2x^{3m + 1}y^{2n} \cdot 4x^{n - 2}y^{6 - m} = -8x^{3m + n - 1}y^{2n - m + 6}.$
$\because -8x^{3m + n - 1}y^{2n - m + 6}$与$ -4x^4y^2$是同类项,$\therefore \begin{cases}3m + n - 1 = 4, \\2n - m + 6 = 2,\end{cases}$
解得$\begin{cases}m = 2, \\n = -1.\end{cases}(2)$原式$=45m^3n^3 - 36m^3n^3 - 16m^3n^3 = -7m^3n^3.$当m = 2,n = -1时,原式=56.
$\because -8x^{3m + n - 1}y^{2n - m + 6}$与$ -4x^4y^2$是同类项,$\therefore \begin{cases}3m + n - 1 = 4, \\2n - m + 6 = 2,\end{cases}$
解得$\begin{cases}m = 2, \\n = -1.\end{cases}(2)$原式$=45m^3n^3 - 36m^3n^3 - 16m^3n^3 = -7m^3n^3.$当m = 2,n = -1时,原式=56.
16. 已知$A=-2x(x^{2}-ax+1)+x(x+6)-2025$.
(1)若多项式$A$不含有$x^{2}$项,求$a$的值;
(2)在(1)的条件下,若$x^{2}-x-1=0$,求$A$的值.
(1)若多项式$A$不含有$x^{2}$项,求$a$的值;
(2)在(1)的条件下,若$x^{2}-x-1=0$,求$A$的值.
答案:
16.解:$(1)A = -2x(x^2 - ax + 1) + x(x + 6) - 2025 = -2x^3 + 2ax^2 - 2x + x^2 + 6x - 2025 = -2x^3 + (2a + 1)x^2 + 4x - 2025 \because A$不含有$x^2$项,$\therefore 2a + 1 = 0,$解得$a = - \frac{1}{2}.(2)$由
(1)可得$A = -2x^3 + 4x - 2025. \because x^2 - x - 1 = 0, \therefore x^2 = x + 1,x^2 - x = 1, \therefore A = -2x \cdot x^2 + 4x - 2025 = -2(x^2 - x) - 2025 = -2 × 1 - 2025 = -2027.$
(1)可得$A = -2x^3 + 4x - 2025. \because x^2 - x - 1 = 0, \therefore x^2 = x + 1,x^2 - x = 1, \therefore A = -2x \cdot x^2 + 4x - 2025 = -2(x^2 - x) - 2025 = -2 × 1 - 2025 = -2027.$
查看更多完整答案,请扫码查看