2025年超越训练八年级数学上册人教版四川专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年超越训练八年级数学上册人教版四川专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年超越训练八年级数学上册人教版四川专版》

8. 如图,在$\triangle ABC$中,$AB = AC$,$AD = BD$,$DE \perp AB$于点$E$.若$BC = 6$,且$\triangle BDC$的周长为$15$,则$AE$的长为
$\frac{9}{2}$
.
答案: 8.$\frac{9}{2}$
9. 如图,利用直尺和圆规作出线段$AB$的垂直平分线$EF$交$AB$于点$D$,并在射线$DG$上截取$DC = DB$,连接$AC$,$BC$.若$AC = 2$,$BC = \frac{38}{11}$,求$\triangle ABC$的面积.
答案: 9.解:由作图,得D为AB的中点.
∵DC = DB,
∴DC = DA = DB,
∴∠DCB = ∠B,∠DCA = ∠A.
∵∠A + ∠ACB + ∠B = 180°,
∴∠A + ∠DCA + ∠DCB + ∠B = 180°,
∴2(∠DCA + ∠DCB) = 180°,
∴∠DCA + ∠DCB = ∠ACB = 90°,即△ACB为直角三角形,
∴$S_{\triangle ABC} = \frac{1}{2}AC \cdot BC = \frac{1}{2} × 2 × \frac{38}{11} = \frac{38}{11}$.
10. 如图,在$\triangle ABC$中,$D$为$BC$上一点,$BA = BD$,且$AB // DE$.
(1)求证:$\angle ADC = \angle ADE$;
(2)若$AE$是$\angle BAD$的平分线,且$\angle B = 36^{\circ}$,求$\angle E$的度数.
答案: 10.
(1)证明:
∵AB//DE,
∴∠BAD + ∠ADE = 180°.
∵BA = BD,
∴∠BAD = ∠BDA,
∴∠BDA + ∠ADE = 180°.又∠BDA + ∠ADC = 180°,
∴∠ADC = ∠ADE.
(2)解:
∵AB = BD,∠B = 36°,
∴∠BAD = $\frac{1}{2}$(180° - ∠B) = $\frac{1}{2}$ × (180° - 36°) = 72°.
∵AE平分∠BAD,
∴∠BAE = $\frac{1}{2}$∠BAD = 36°.
∵AB//DE,
∴∠E = ∠BAE = 36°.
11. 如图,在$\triangle ABC$中,$AB = AC$,点$D$,$E$,$F$分别在$BC$,$AB$,$AC$上,$BD = CF$,$BE = CD$,连接$EF$,$G$是$EF$的中点,连接$DG$.求证:$DG \perp EF$.
答案:
11.证明:如图,连接DE,DF.
∵AB = AC,
∴∠B = ∠C.又BD = CF,BE = CD,
∴△BDE≌△CFD(SAS),
∴DE = DF.
∵G是EF的中点,
∴DG⊥EF.
                     EK1ADC
12. 如图,点$B$,$D$在射线$AM$上,点$C$,$E$在射线$AN$上,且$AB = BC = CD = DE$.若$\angle EDM = 84^{\circ}$,则$\angle A$的度数为
21°
.

答案: 12.21°
13. [2024·内江]如图,在$\triangle ABC$中,$\angle DCE = 40^{\circ}$,$AE = AC$,$BC = BD$,则$\angle ACB$的度数为
100°
.
答案: 13.100°
14. 如图,在$\triangle ABC$中,$AB = AC$,$D$,$E$分别是$AB$,$BC$上的点,连接$DE$并延长与$AC$的延长线交于点$F$.若$DE = EF$,求证:$DB = CF$.
答案:
14.证明:如图,过点D作DG//AF交BC于点G,则∠DGB = ∠ACB,∠DGE = ∠FCE.在
$\triangle DGE$和$\triangle FCE$中,$\begin{cases}\angle DGE = \angle FCE, \\\angle DEG = \angle FEC, \\DE = FE,\end{cases}$
∴△DGE≌△FCE(AAS),
∴DG = FC.
又AB = AC,
∴∠ACB = ∠B,
∴∠B = ∠DGB.如图,过点D作DH⊥BG于点H.易证△DHB≌△DHG(AAS),
∴DB = DG,
∴DB = CF.
                     BHGE

查看更多完整答案,请扫码查看

关闭