2025年考出好成绩七年级数学下册鲁教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年考出好成绩七年级数学下册鲁教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年考出好成绩七年级数学下册鲁教版》

1. 如图,在△ABC中,∠B = 50°,∠C = 20°. 过点A作AE⊥BC,垂足为E,延长EA至点D,使AD = AC. 在边AC上截取AF = AB,连接DF. 求证:DF = CB.
答案: 证明:在$\triangle ABC$中,$\angle B = 50^{\circ}$,$\angle C = 20^{\circ}$,
$\therefore\angle CAB = 180^{\circ}-\angle B - \angle C = 110^{\circ}$。
$\because AE\perp BC$,$\therefore\angle AEC = 90^{\circ}$,
$\therefore\angle DAF = \angle AEC+\angle C = 110^{\circ}$,
$\therefore\angle DAF = \angle CAB$。
在$\triangle DAF$和$\triangle CAB$中,
$\because AD = BC$,$\angle DAF = \angle CAB$,$AF = AB$,
$\therefore\triangle DAF\cong\triangle CAB(SAS)$,
$\therefore DF = CB$。
2. 如图,在△ABC和△ADE中,延长BC交DE于点F. BC = DE,AC = AE,∠ACF + ∠AED = 180°. 求证:AB = AD.
答案: 证明:$\because\angle ACB+\angle ACF = 180^{\circ}$,$\angle ACF+\angle AED = 180^{\circ}$,
$\therefore\angle ACB = \angle AED$。
在$\triangle ABC$和$\triangle ADE$中,
$\because BC = DE$,$\angle ACB = \angle AED$,$AC = AE$,
$\therefore\triangle ABC\cong\triangle ADE(SAS)$,
$\therefore AB = AD$。
3. 如图,在△ABC中,AB = AC,AD为△ABC的角平分线. 以点A为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.
(1)求证:△ADE≌△ADF;
(2)若∠BAC = 80°,求∠BDE的度数.
答案: 解:
(1) 证明:$\because AD$是$\triangle ABC$的角平分线,
$\therefore\angle BAD = \angle CAD$。
由作图知,$AE = AF$。
在$\triangle ADE$和$\triangle ADF$中,
$\because AE = AF$,$\angle BAD = \angle CAD$,$AD = AD$,
$\therefore\triangle ADE\cong\triangle ADF(SAS)$。
(2)$\because\angle BAC = 80^{\circ}$,$AD$为$\triangle ABC$的角平分线,
$\therefore\angle EAD=\frac{1}{2}\angle BAC = 40^{\circ}$。
由作图知,$AE = AD$,
$\therefore\angle AED = \angle ADE=\frac{1}{2}\times(180^{\circ}-40^{\circ}) = 70^{\circ}$。
$\because AB = AC$,$AD$为$\triangle ABC$的角平分线,
$\therefore AD\perp BC$,$\therefore\angle ADB = 90^{\circ}$,
$\therefore\angle BDE = 90^{\circ}-\angle ADE = 20^{\circ}$。
4. 一线三等角模型 如图,在四边形ABCD中,点E是边BC上一点,且BE = CD,∠B = ∠AED = ∠C.
(1)求证:∠EAD = ∠EDA;
(2)若∠C = 60°,DE = 4时,求△AED的面积.
答案: 解:
(1) 证明:$\because\angle B = \angle AED = \angle C$,$\angle AEC = \angle B+\angle BAE=\angle AED+\angle CED$,
$\therefore\angle BAE = \angle CED$。
在$\triangle ABE$和$\triangle ECD$中,
$\because\angle BAE = \angle CED$,$\angle B = \angle C$,$BE = CD$,
$\therefore\triangle ABE\cong\triangle ECD(AAS)$,
$\therefore AE = ED$,$\therefore\angle EAD = \angle EDA$。
(2)$\because\angle AED = \angle C = 60^{\circ}$,$AE = ED$,
$\therefore\triangle AED$为等边三角形,
$\therefore AE = AD = ED = 4$。
如图,过点$A$作$AF\perp ED$于点$F$,
$\therefore EF=\frac{1}{2}ED = 2$,
$\therefore AF=\sqrt{AE^{2}-EF^{2}}=\sqrt{4^{2}-2^{2}}=\sqrt{12}$,
$\therefore S_{\triangle AED}=\frac{1}{2}ED\cdot AF=\frac{1}{2}\times4\times\sqrt{12}$。

查看更多完整答案,请扫码查看

关闭