第77页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
10. 如图,AB⊥BC,AD⊥DC,AB = AD,求证:∠1 = ∠2.

答案:
证明:\(\because AB\perp BC,AD\perp DC\), \(\therefore \angle B=\angle D = 90^{\circ}\), \(\therefore \triangle ABC\) 与 \(\triangle ADC\) 为直角三角形. 在 \(Rt\triangle ABC\) 和 \(Rt\triangle ADC\) 中, \(\because AB = AD,AC = AC\), \(\therefore Rt\triangle ABC\cong Rt\triangle ADC(HL)\), \(\therefore \angle 1=\angle 2\).
11. 如图,在Rt△ABC和Rt△A'B'C'中,∠C = ∠C' = 90°,AC = A'C',AD与A'D'分别为BC,B'C'边上的中线,且AD = A'D'. 求证:Rt△ABC≌Rt△A'B'C'.

答案:
证明:在 \(Rt\triangle ACD\) 和 \(Rt\triangle A'C'D'\) 中, \(\because AC = A'C',AD = A'D'\), \(\therefore Rt\triangle ACD\cong Rt\triangle A'C'D'(HL)\), \(\therefore CD = C'D'\). \(\because AD\) 与 \(A'D'\) 分别为 \(BC,B'C'\) 边上的中线, \(\therefore CB = 2CD,C'B' = 2C'D'\), \(\therefore CB = C'B'\). 在 \(Rt\triangle ABC\) 和 \(Rt\triangle A'B'C'\) 中, \(\because AC = A'C',\angle C=\angle C' = 90^{\circ},CB = C'B'\), \(\therefore Rt\triangle ABC\cong Rt\triangle A'B'C'(SAS)\).
12. 推理能力 如图,△ABC的高BD与CE相交于点O,OD = OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.

答案:
解:\(\triangle ADO\cong \triangle AEO,\triangle DOC\cong \triangle EOB,\triangle COM\cong \triangle BOM,\triangle ACM\cong \triangle ABM,\triangle ADB\cong \triangle AEC,\triangle BCE\cong \triangle CBD\). 理由如下: \(\because \triangle ABC\) 的高 \(BD\) 与 \(CE\) 相交于点 \(O\), \(\therefore \angle ADO=\angle AEO = 90^{\circ}\). 在 \(Rt\triangle ADO\) 和 \(Rt\triangle AEO\) 中, \(\because OA = OA,OD = OE\), \(\therefore Rt\triangle ADO\cong Rt\triangle AEO(HL)\), \(\therefore \angle DAO=\angle EAO,AD = AE\). 在 \(\triangle DOC\) 和 \(\triangle EOB\) 中, \(\because \angle ODC=\angle OEB = 90^{\circ},OD = OE,\angle DOC=\angle BOE\), \(\therefore \triangle DOC\cong \triangle EOB(ASA)\), \(\therefore DC = EB,OC = OB\), \(\therefore DC + AD = EB + AE\),即 \(AC = AB\). \(\because \angle DAO=\angle EAO\), \(\therefore AM\perp BC,CM = BM\), \(\therefore \angle OMC=\angle OMB = 90^{\circ}\). 在 \(Rt\triangle COM\) 和 \(Rt\triangle BOM\) 中, \(\because OC = OB,OM = OM\), \(\therefore Rt\triangle COM\cong Rt\triangle BOM(HL)\). 在 \(Rt\triangle ACM\) 和 \(Rt\triangle ABM\) 中, \(\because AC = AB,AM = AM\), \(\therefore Rt\triangle ACM\cong Rt\triangle ABM(HL)\). 在 \(\triangle ADB\) 和 \(\triangle AEC\) 中, \(\because AD = AE,\angle DAB=\angle EAC,AB = AC\), \(\therefore \triangle ADB\cong \triangle AEC(SAS)\). 在 \(Rt\triangle BCE\) 和 \(Rt\triangle CBD\) 中, \(\because BC = CB,BE = CD\), \(\therefore Rt\triangle BCE\cong Rt\triangle CBD(HL)\).
查看更多完整答案,请扫码查看