第53页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
10. 已知:如图,$AD// BC$,点$E$,$F$分别在$DC$,$AB$延长线上,$\angle DCB = \angle DAB$,$AE\perp EF$.
(1) 求证:$DC// AB$;
(2) 若$\angle DEA = 30^{\circ}$,求$\angle AFE$的大小.

(1) 求证:$DC// AB$;
(2) 若$\angle DEA = 30^{\circ}$,求$\angle AFE$的大小.
答案:
解:
(1) 证明:$\because AD// BC$
$\therefore\angle ABC+\angle DAB = 180^{\circ}$
$\because\angle DCB=\angle DAB$
$\therefore\angle ABC+\angle DCB = 180^{\circ}$
$\therefore DC// AB$
(2) 由
(1)知$DC// AB$
$\therefore\angle EAF=\angle DEA = 30^{\circ}$
$\because AE\perp EF,\therefore\angle AEF = 90^{\circ}$
$\therefore\angle AFE = 90^{\circ}-\angle EAF = 60^{\circ}$
(1) 证明:$\because AD// BC$
$\therefore\angle ABC+\angle DAB = 180^{\circ}$
$\because\angle DCB=\angle DAB$
$\therefore\angle ABC+\angle DCB = 180^{\circ}$
$\therefore DC// AB$
(2) 由
(1)知$DC// AB$
$\therefore\angle EAF=\angle DEA = 30^{\circ}$
$\because AE\perp EF,\therefore\angle AEF = 90^{\circ}$
$\therefore\angle AFE = 90^{\circ}-\angle EAF = 60^{\circ}$
11. 如图,在$\triangle ABC$中,点$D$,$E$分别在边$AB$,$AC$上,将$\triangle ADE$沿$DE$折叠至$\triangle FDE$位置,点$A$的对应点为$F$. 若$\angle A = 15^{\circ}$,$\angle BDF = 120^{\circ}$,则$\angle CEF$的度数为( )

A. $90^{\circ}$
B. $100^{\circ}$
C. $110^{\circ}$
D. $120^{\circ}$
A. $90^{\circ}$
B. $100^{\circ}$
C. $110^{\circ}$
D. $120^{\circ}$
答案:
A
12. 如图,点$D$,$E$分别在$\triangle ABC$的边$AB$,$AC$上,点$F$在线段$CD$上,且$\angle 1 = \angle B$,$DE// BC$.
(1) 求证:$AB// EF$;
(2) 若$DE$平分$\angle ADC$,$\angle ACB = 2\angle B$,求证:$\angle DFE = \angle DEC$.

(1) 求证:$AB// EF$;
(2) 若$DE$平分$\angle ADC$,$\angle ACB = 2\angle B$,求证:$\angle DFE = \angle DEC$.
答案:
证明:
(1)$\because DE// BC$
$\therefore\angle ADE=\angle B$
$\because\angle 1=\angle B,\therefore\angle ADE=\angle 1$
$\therefore AB// EF$
(2) 由
(1)知,$\angle ADE=\angle 1=\angle B$
$\because DE$平分$\angle ADC$
$\therefore\angle ADE=\angle CDE$
$\therefore\angle ADE=\angle CDE=\angle 1=\angle B$
$\because DE// BC,\therefore\angle CDE=\angle BCD$
$\therefore\angle BCD=\angle 1=\angle B$
$\because\angle ACB = 2\angle B,\angle ACB=\angle BCD+\angle ACD$
$\therefore\angle BCD+\angle ACD = 2\angle B$
$\therefore\angle ACD=\angle B=\angle 1$
$\therefore\angle DFE=\angle ACD+\angle CEF=\angle 1+\angle CEF=\angle DEC$
(1)$\because DE// BC$
$\therefore\angle ADE=\angle B$
$\because\angle 1=\angle B,\therefore\angle ADE=\angle 1$
$\therefore AB// EF$
(2) 由
(1)知,$\angle ADE=\angle 1=\angle B$
$\because DE$平分$\angle ADC$
$\therefore\angle ADE=\angle CDE$
$\therefore\angle ADE=\angle CDE=\angle 1=\angle B$
$\because DE// BC,\therefore\angle CDE=\angle BCD$
$\therefore\angle BCD=\angle 1=\angle B$
$\because\angle ACB = 2\angle B,\angle ACB=\angle BCD+\angle ACD$
$\therefore\angle BCD+\angle ACD = 2\angle B$
$\therefore\angle ACD=\angle B=\angle 1$
$\therefore\angle DFE=\angle ACD+\angle CEF=\angle 1+\angle CEF=\angle DEC$
13. 推理能力 已知:直线$EF$分别交直线$AB$,$CD$于点$G$,$H$,$\angle AGE+\angle CHF = 180^{\circ}$.
(1) 如图1,求证:$AB// CD$;
(2) 如图2,$N$为直线$AB$,$CD$之间的一点,$\angle AGH = 2\angle CHG$,$\angle AGN:\angle NGH = 3:2$,$\angle GHN:\angle CHN = 1:2$,求$\angle N$的度数;
(3) 如图3,$M$,$N$分别为直线$AB$,$CD$之间不同的两点,连接$GM$,$HM$,$GN$,$HN$,且$GN$平分$\angle AGM$,$HN$平分$\angle CHM$,$\angle M-\angle N = 30^{\circ}$,求$\angle N$的度数.

(1) 如图1,求证:$AB// CD$;
(2) 如图2,$N$为直线$AB$,$CD$之间的一点,$\angle AGH = 2\angle CHG$,$\angle AGN:\angle NGH = 3:2$,$\angle GHN:\angle CHN = 1:2$,求$\angle N$的度数;
(3) 如图3,$M$,$N$分别为直线$AB$,$CD$之间不同的两点,连接$GM$,$HM$,$GN$,$HN$,且$GN$平分$\angle AGM$,$HN$平分$\angle CHM$,$\angle M-\angle N = 30^{\circ}$,求$\angle N$的度数.
答案:
解:
(1) 证明:$\because\angle AGE+\angle AGH = 180^{\circ},\angle AGE+\angle CHF = 180^{\circ}$
$\therefore\angle AGH=\angle CHF,\therefore AB// CD$
(2) 由
(1)可知,$AB// CD$
$\therefore\angle AGH+\angle CHG = 180^{\circ}$
$\because\angle AGH = 2\angle CHG$
$\therefore\angle AGH = 120^{\circ},\angle CHG = 60^{\circ}$
$\because\angle AGN:\angle NGH = 3:2,\angle AGN+\angle NGH = 120^{\circ}$
$\therefore\angle AGN = 72^{\circ},\angle NGH = 48^{\circ}$
$\because\angle GHN:\angle CHN = 1:2,\angle GHN+\angle CHN = 60^{\circ}$
$\therefore\angle GHN = 20^{\circ},\angle CHN = 40^{\circ}$
$\therefore\angle N = 180^{\circ}-\angle NGH-\angle GHN = 180^{\circ}-48^{\circ}-20^{\circ}=112^{\circ}$
(3) 由
(2)可知,$\angle N=\angle AGN+\angle CHN$
如图,过点$M$作$MQ// AB$,交$GH$于点$Q$
$\because AB// CD$
$\therefore MQ// AB// CD$
$\therefore\angle AGM+\angle GMQ = 180^{\circ},\angle QMH+\angle CHM = 180^{\circ}$
$\therefore\angle GMH = 360^{\circ}-\angle AGM-\angle CHM$
$\because GN$平分$\angle AGM$,$HN$平分$\angle CHM$
$\therefore\angle AGN=\frac{1}{2}\angle AGM,\angle CHN=\frac{1}{2}\angle CHM$
$\therefore\angle N=\frac{1}{2}(\angle AGM+\angle CHM)$
$\therefore\angle GMH = 360^{\circ}-2\angle N$
$\because\angle GMH-\angle N = 30^{\circ}$
$\therefore\angle N = 110^{\circ}$
(1) 证明:$\because\angle AGE+\angle AGH = 180^{\circ},\angle AGE+\angle CHF = 180^{\circ}$
$\therefore\angle AGH=\angle CHF,\therefore AB// CD$
(2) 由
(1)可知,$AB// CD$
$\therefore\angle AGH+\angle CHG = 180^{\circ}$
$\because\angle AGH = 2\angle CHG$
$\therefore\angle AGH = 120^{\circ},\angle CHG = 60^{\circ}$
$\because\angle AGN:\angle NGH = 3:2,\angle AGN+\angle NGH = 120^{\circ}$
$\therefore\angle AGN = 72^{\circ},\angle NGH = 48^{\circ}$
$\because\angle GHN:\angle CHN = 1:2,\angle GHN+\angle CHN = 60^{\circ}$
$\therefore\angle GHN = 20^{\circ},\angle CHN = 40^{\circ}$
$\therefore\angle N = 180^{\circ}-\angle NGH-\angle GHN = 180^{\circ}-48^{\circ}-20^{\circ}=112^{\circ}$
(3) 由
(2)可知,$\angle N=\angle AGN+\angle CHN$
如图,过点$M$作$MQ// AB$,交$GH$于点$Q$
$\because AB// CD$
$\therefore MQ// AB// CD$
$\therefore\angle AGM+\angle GMQ = 180^{\circ},\angle QMH+\angle CHM = 180^{\circ}$
$\therefore\angle GMH = 360^{\circ}-\angle AGM-\angle CHM$
$\because GN$平分$\angle AGM$,$HN$平分$\angle CHM$
$\therefore\angle AGN=\frac{1}{2}\angle AGM,\angle CHN=\frac{1}{2}\angle CHM$
$\therefore\angle N=\frac{1}{2}(\angle AGM+\angle CHM)$
$\therefore\angle GMH = 360^{\circ}-2\angle N$
$\because\angle GMH-\angle N = 30^{\circ}$
$\therefore\angle N = 110^{\circ}$
查看更多完整答案,请扫码查看