第57页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
12. 木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有( )
A. 18张
B. 16张
C. 14张
D. 12张
A. 18张
B. 16张
C. 14张
D. 12张
答案:
D
13. 一个样本的40个数据分别落在4个组内,第1、2、3组数据的频数分别是2、6、20,则第4组数据的频率为______.
答案:
0.3
14. 在一个不透明的口袋中装有红球和白球共40个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有20次摸到红球,则口袋中红球的个数约为______.
答案:
8
15. 课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:

由此估计这种作物种子发芽概率约为_______.(精确到0.01)
由此估计这种作物种子发芽概率约为_______.(精确到0.01)
答案:
0.94
16. 在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则估计口袋中白球大约有______个.
答案:
15
17. 如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为20 cm的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.35附近,由此可估计不规则区域的面积是______cm².

答案:
140
18. 对某工厂生产的直径为38 mm的乒乓球进行产品质量检查,结果如下表所示:

(1)计算各次检查中“优等品”的频率,将结果填入上表(保留两位小数);
(2)估计该厂生产的乒乓球“优等品”的概率大约是多少(保留两位小数)?请简单说明理由.
(1)计算各次检查中“优等品”的频率,将结果填入上表(保留两位小数);
(2)估计该厂生产的乒乓球“优等品”的概率大约是多少(保留两位小数)?请简单说明理由.
答案:
解:
(1)0.92,0.91,0.90.
(2)估计该厂生产的乒乓球“优等品”的概率大约是0.90.理由如下:由表可知,随着抽取球数的增加,频率稳定于0.90,
所以估计该厂生产的乒乓球“优等品”的概率大约是0.90.
(1)0.92,0.91,0.90.
(2)估计该厂生产的乒乓球“优等品”的概率大约是0.90.理由如下:由表可知,随着抽取球数的增加,频率稳定于0.90,
所以估计该厂生产的乒乓球“优等品”的概率大约是0.90.
查看更多完整答案,请扫码查看