2025年考出好成绩七年级数学下册鲁教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年考出好成绩七年级数学下册鲁教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年考出好成绩七年级数学下册鲁教版》

9. 已知点$P(m,n)$在直线$y = -2x + 1$上,且$2m - 3n\leq0$,则下列不等关系一定成立的是 ( )
A. $\frac{m}{n}\leq\frac{3}{2}$
B. $\frac{m}{n}\leq\frac{2}{3}$
C. $\frac{n}{m}\leq\frac{3}{2}$
D. $\frac{n}{m}\leq\frac{2}{3}$
答案: D
10. 如图,函数$y = kx + b(k\neq0)$的图象经过点$B(2,0)$,与函数$y = 2x$的图象交于点$A$,点$A$的纵坐标为$2$,则不等式$0 < kx + b < 2x$的解集为 ( )
第10题图
A. $x > 2$
B. $x < 2$
C. $0 < x < 2$
D. $1 < x < 2$
答案: D
11. 一次函数$y_1 = kx + b$与$y_2 = x + a$的图象如图,甲、乙两位同学给出的下列结论:
甲说:方程$kx + b = x + a$的解是$x = 3$;
乙说:当$x < 3$时,$y_1 < y_2$.
下列说法正确的是 ( )
第11题图
A. 甲正确,乙错误
B. 乙正确,甲错误
C. 甲乙都正确
D. 甲乙都错误
答案: A
12. 如图,已知函数$y = -2x + m(m$为常数$)$和$y = nx - 2(n$为常数且$n\neq0)$的图象交于点$P(2,a)$,则关于$x$的不等式$-2x + m < nx - 2$的解集是________.
答案: x>2
13. 已知一次函数$y = mx + n(m\neq0,m,n$为常数$)$,$x$与$y$的对应值如下表:

那么,不等式$mx + n < 0$的解集是________.
答案: x<−1
14. 若一次函数$y = kx + b(k < 0)$的图象经过点$A(3,1)$,则不等式$kx + b < \frac{1}{3}x$的解集为________.
答案: x>3
15. 易错点 忽视一次函数与不等式的关系 一次函数$y_1 = kx + b(b > 5)$与$y_2 = mx - m$交于点$A(3,2)$,有下列结论:
①关于$x$的方程$kx + b = mx - m$的解为$x = 3$;
②关于$x$的不等式组$kx + b > mx - m\geq0$的解集为$1\leq x < 3$;
③$k < -1$;
④若$|y_1 - y_2| = b + 1$,则$x = 0$或$-6$.
其中正确的结论是__________.(填序号)
答案: ①②③
16. 一次函数$y_1 = kx + b(k\neq0)$和$y_2 = -4x + a$的图象如图所示,且$A(0,4),C(-2,0)$.
(1) 由图可知,不等式$kx + b > 0$的解集是__________;
(2) 若不等式$kx + b > -4x + a$的解集是$x > 1$.
①求点$B$的坐标;
②求$a$的值.
答案: 解:
(1)x>−2.
(2)①:.A(0,4),C(−2,0)在一次函数y=kx+b的图象上,
∴{b−=24k,+b=0,解得{kb==42.,
∴一次函数y1=2x+4.
∵不等式kx+b>−4x+a的解集是x>1,
∴点B的横坐标是x=1.
  点B的横坐标是x=1.当x=1时,y=2×1+4=6,
∴点B的坐标为(1,6).
 ②
∵点B(1,6)在一次函数y=
  −4x+α的图象上,
∴6=−4×1+a,解得α=10.

查看更多完整答案,请扫码查看

关闭