第3页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
14. 鸡爪模型 (2024湖南岳阳期中,18,★★☆)如图,P是等边△ABC内部的一个点,PA = 2,PB = 2√3,PC = 4,则△ABC的边长是________.

答案:
答案:$2\sqrt{7}$ 解析:已知$\triangle ABC$是等边三角形,如图,将$\triangle APC$绕点$A$逆时针旋转$60^{\circ}$到$\triangle AQB$的位置,连接$PQ$,过点$A$作$AM\perp BP$,交$BP$的延长线于点$M$. 由旋转的性质得$AQ = AP = 2$,$\angle PAQ = 60^{\circ}$,$BQ = PC = 4$,$\therefore \triangle APQ$为等边三角形,$\therefore \angle APQ = 60^{\circ}$,$PQ = PA = 2$,$\because PQ^{2}+BP^{2}=2^{2}+(2\sqrt{3})^{2}=4^{2}=BQ^{2}$,$\therefore \angle BPQ = 90^{\circ}$,$\therefore \angle APB = 90^{\circ}+60^{\circ}=150^{\circ}$,$\therefore \angle APM = 30^{\circ}$,$\therefore AM=\frac{1}{2}PA = 1$,$PM=\frac{\sqrt{3}}{2}PA=\sqrt{3}$,$\therefore BM = BP + PM = 3\sqrt{3}$,由勾股定理得,$AB^{2}=BM^{2}+AM^{2}=27 + 1 = 28$,$\therefore AB = 2\sqrt{7}$.

答案:$2\sqrt{7}$ 解析:已知$\triangle ABC$是等边三角形,如图,将$\triangle APC$绕点$A$逆时针旋转$60^{\circ}$到$\triangle AQB$的位置,连接$PQ$,过点$A$作$AM\perp BP$,交$BP$的延长线于点$M$. 由旋转的性质得$AQ = AP = 2$,$\angle PAQ = 60^{\circ}$,$BQ = PC = 4$,$\therefore \triangle APQ$为等边三角形,$\therefore \angle APQ = 60^{\circ}$,$PQ = PA = 2$,$\because PQ^{2}+BP^{2}=2^{2}+(2\sqrt{3})^{2}=4^{2}=BQ^{2}$,$\therefore \angle BPQ = 90^{\circ}$,$\therefore \angle APB = 90^{\circ}+60^{\circ}=150^{\circ}$,$\therefore \angle APM = 30^{\circ}$,$\therefore AM=\frac{1}{2}PA = 1$,$PM=\frac{\sqrt{3}}{2}PA=\sqrt{3}$,$\therefore BM = BP + PM = 3\sqrt{3}$,由勾股定理得,$AB^{2}=BM^{2}+AM^{2}=27 + 1 = 28$,$\therefore AB = 2\sqrt{7}$.
15. 新考向·新定义试题 (2024四川泸州中考,16,★★☆)定义:在平面直角坐标系中,将一个图形先向上平移a(a > 0)个单位,再绕原点按逆时针方向旋转θ角度,这样的图形运动叫做图形的ρ(a,θ)变换.如:点A(2,0)按照ρ(1,90°)变换后得到的点A'的坐标为(-1,2),则点B(√3,-1)按照ρ(2,105°)变换后得到的点B'的坐标为________. (M9224001)
答案:
答案:$(-\sqrt{2},\sqrt{2})$ 解析:根据题意,先将点$B(\sqrt{3},-1)$向上平移$2$个单位,得到点$C(\sqrt{3},1)$,如图,$\therefore CE = 1$,$OE=\sqrt{3}$,$\therefore OC=\sqrt{1^{2}+(\sqrt{3})^{2}} = 2$,$\sin\angle COE=\frac{CE}{OC}=\frac{1}{2}$,$\therefore \angle COE = 30^{\circ}$,再将点$C(\sqrt{3},1)$绕原点按逆时针方向旋转$105^{\circ}$,$\therefore OB' = OC = 2$,$\angle B'OE = 105^{\circ}+30^{\circ}=135^{\circ}$,$\therefore \angle B'OD = 180^{\circ}-135^{\circ}=45^{\circ}$,作$B'D\perp x$轴于点$D$,$\therefore B'D = OD = OB'\cdot\sin45^{\circ}=\sqrt{2}$,$\therefore$点$B'$的坐标为$(-\sqrt{2},\sqrt{2})$.

答案:$(-\sqrt{2},\sqrt{2})$ 解析:根据题意,先将点$B(\sqrt{3},-1)$向上平移$2$个单位,得到点$C(\sqrt{3},1)$,如图,$\therefore CE = 1$,$OE=\sqrt{3}$,$\therefore OC=\sqrt{1^{2}+(\sqrt{3})^{2}} = 2$,$\sin\angle COE=\frac{CE}{OC}=\frac{1}{2}$,$\therefore \angle COE = 30^{\circ}$,再将点$C(\sqrt{3},1)$绕原点按逆时针方向旋转$105^{\circ}$,$\therefore OB' = OC = 2$,$\angle B'OE = 105^{\circ}+30^{\circ}=135^{\circ}$,$\therefore \angle B'OD = 180^{\circ}-135^{\circ}=45^{\circ}$,作$B'D\perp x$轴于点$D$,$\therefore B'D = OD = OB'\cdot\sin45^{\circ}=\sqrt{2}$,$\therefore$点$B'$的坐标为$(-\sqrt{2},\sqrt{2})$.
16. (2022安徽中考,16,★★☆)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A₁B₁C₁,请画出△A₁B₁C₁.
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A₂B₂C₂,请画出△A₂B₂C₂.

(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A₁B₁C₁,请画出△A₁B₁C₁.
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A₂B₂C₂,请画出△A₂B₂C₂.
答案:
解析: (1)如图,$\triangle A_1B_1C_1$即为所求. (2)如图,$\triangle A_2B_2C_2$即为所求.

解析: (1)如图,$\triangle A_1B_1C_1$即为所求. (2)如图,$\triangle A_2B_2C_2$即为所求.
17. 推理能力 数形结合思想 如图,在Rt△ABC中,∠ACB = 90°,BC = 8,E为BC上一点,且CE = 3,D为直线AC上一动点,将DE绕点E逆时针旋转90°得到FE,连接BF,CF,则BF + CF的最小值为________.

答案:
答案:$10$ 解析:过$F$作$FM\perp BC$于$M$,如图. $\because$将$DE$绕点$E$逆时针旋转$90^{\circ}$得到$FE$,$\therefore DE = FE$,$\angle DEF = 90^{\circ}$,$\therefore \angle CED = 90^{\circ}-\angle FEM=\angle EFM$,$\because \angle DCE = 90^{\circ}=\angle EMF$,$\therefore \triangle DCE\cong\triangle EMF(AAS)$,$\therefore DC = EM$,$MF = CE = 3$,设$DC = EM = x$,则$CM = x + 3$,$\therefore BM = BC - CM = 8-(x + 3)=5 - x$,$\therefore CF + BF=\sqrt{CM^{2}+MF^{2}}+\sqrt{BM^{2}+MF^{2}}=\sqrt{(x + 3)^{2}+3^{2}}+\sqrt{(5 - x)^{2}+3^{2}}=\sqrt{[x-(-3)]^{2}+[0-(-3)]^{2}}+\sqrt{(x - 5)^{2}+(0 - 3)^{2}}$,而$\sqrt{[x-(-3)]^{2}+[0-(-3)]^{2}}+\sqrt{(x - 5)^{2}+(0 - 3)^{2}}$相当于$x$轴上的点$(x,0)$到点$(-3,-3)$和到点$(5,3)$的距离之和,$\therefore$当点$(x,0)$与$(-3,-3)$,$(5,3)$共线时,$CF + BF$的值最小,最小值即为点$(-3,-3)$和$(5,3)$之间的距离,$\because \sqrt{(-3 - 5)^{2}+(-3 - 3)^{2}} = 10$,$\therefore BF + CF$的最小值为$10$.

答案:$10$ 解析:过$F$作$FM\perp BC$于$M$,如图. $\because$将$DE$绕点$E$逆时针旋转$90^{\circ}$得到$FE$,$\therefore DE = FE$,$\angle DEF = 90^{\circ}$,$\therefore \angle CED = 90^{\circ}-\angle FEM=\angle EFM$,$\because \angle DCE = 90^{\circ}=\angle EMF$,$\therefore \triangle DCE\cong\triangle EMF(AAS)$,$\therefore DC = EM$,$MF = CE = 3$,设$DC = EM = x$,则$CM = x + 3$,$\therefore BM = BC - CM = 8-(x + 3)=5 - x$,$\therefore CF + BF=\sqrt{CM^{2}+MF^{2}}+\sqrt{BM^{2}+MF^{2}}=\sqrt{(x + 3)^{2}+3^{2}}+\sqrt{(5 - x)^{2}+3^{2}}=\sqrt{[x-(-3)]^{2}+[0-(-3)]^{2}}+\sqrt{(x - 5)^{2}+(0 - 3)^{2}}$,而$\sqrt{[x-(-3)]^{2}+[0-(-3)]^{2}}+\sqrt{(x - 5)^{2}+(0 - 3)^{2}}$相当于$x$轴上的点$(x,0)$到点$(-3,-3)$和到点$(5,3)$的距离之和,$\therefore$当点$(x,0)$与$(-3,-3)$,$(5,3)$共线时,$CF + BF$的值最小,最小值即为点$(-3,-3)$和$(5,3)$之间的距离,$\because \sqrt{(-3 - 5)^{2}+(-3 - 3)^{2}} = 10$,$\therefore BF + CF$的最小值为$10$.
1. (2024广西柳州期末)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB = 5,则BE的长度为________.

答案:
答案:$5$
解析:$\because \triangle ABC$绕点$A$顺时针旋转$60^{\circ}$得到$\triangle AED$,$\therefore AB = AE$,$\angle BAE = 60^{\circ}$,$\therefore \triangle AEB$是等边三角形,$\therefore BE = AB$,$\because AB = 5$,$\therefore BE = 5$.
2. (2024安徽淮南大通期末)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB'C',点C'恰好落在边AB上,连接BB',则∠BB'C' = ________度.

答案:
答案:$20$
解析:$\because Rt\triangle ABC$绕点$A$逆时针旋转$40^{\circ}$得到$Rt\triangle AB'C'$,点$C'$恰好落在边$AB$上,$\therefore \angle AC'B'=\angle C = 90^{\circ}$,$\angle BAB' = 40^{\circ}$,$AB = AB'$,$\therefore \angle AB'B=\angle AB'B=\frac{1}{2}\times(180^{\circ}-40^{\circ}) = 70^{\circ}$,$\therefore \angle BB'C' = 90^{\circ}-\angle C'BB' = 20^{\circ}$.
3. 如图,在△ABC中,已知∠ACB = 45°,BC = 1,AB = √5,将△ABC绕点A逆时针旋转得到△ADE,点B与点D对应,点C与点E对应,且C,D,E三点恰好在同一条直线上,则CE的长度为________.

答案:
答案:$4$ 解析:如图,连接$BD$,$\because \triangle ABC$绕点$A$逆时针旋转得到$\triangle ADE$,$\therefore \triangle ABC\cong\triangle ADE$,$\therefore AB = AD$,$AC = AE$,$\angle E=\angle ACB = 45^{\circ}$,$DE = BC = 1$,$\because C$,$D$,$E$三点恰好在同一条直线上,$AC = AE$,$\therefore \angle ACE=\angle E = 45^{\circ}$,$\therefore \angle CAE=\angle BAD = 90^{\circ}$,$\therefore \triangle BAD$是直角三角形三角形,$\therefore BD=\sqrt{AB^{2}+AD^{2}}=\sqrt{10}$,$\because \angle ACB=\angle ACE = 45^{\circ}$,$\therefore \angle BCE = 90^{\circ}$,$\therefore CD=\sqrt{BD^{2}-BC^{2}} = 3$,$\therefore CE = CD + DE = 4$.

答案:$4$ 解析:如图,连接$BD$,$\because \triangle ABC$绕点$A$逆时针旋转得到$\triangle ADE$,$\therefore \triangle ABC\cong\triangle ADE$,$\therefore AB = AD$,$AC = AE$,$\angle E=\angle ACB = 45^{\circ}$,$DE = BC = 1$,$\because C$,$D$,$E$三点恰好在同一条直线上,$AC = AE$,$\therefore \angle ACE=\angle E = 45^{\circ}$,$\therefore \angle CAE=\angle BAD = 90^{\circ}$,$\therefore \triangle BAD$是直角三角形三角形,$\therefore BD=\sqrt{AB^{2}+AD^{2}}=\sqrt{10}$,$\because \angle ACB=\angle ACE = 45^{\circ}$,$\therefore \angle BCE = 90^{\circ}$,$\therefore CD=\sqrt{BD^{2}-BC^{2}} = 3$,$\therefore CE = CD + DE = 4$.
查看更多完整答案,请扫码查看