2025年名校题库八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校题库八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校题库八年级数学上册北师大版》

8. (天府新区期末)如图,在$Rt△ABC$中,$∠ABC= 90^{\circ }$,分别以AC,AB为直角边在$Rt△ABC外作等腰直角△ACD和等腰直角△ABE$,连接DE.若AC= 13,AB= 5,则$△ADE$的面积为______.
答案:
30 [解析]解法一:如图1,过点D作AB的垂线交BA的延长线于点H,BA的延长线交DE于点F,则$∠H = ∠ABC = 90^{\circ}$,$\because ∠CAD = ∠ABC = 90^{\circ}$,$\therefore ∠DAH + ∠CAB = ∠ACB + ∠CAB = 90^{\circ}$,$\therefore ∠DAH = ∠ACB$。在$△ADH$和$△CAB$中,$\begin{cases}∠H = ∠ABC\\∠DAH = ∠ACB\\AD = CA\end{cases}$,$\therefore △ADH≌△CAB (AAS)$,$\therefore DH = AB = 5$,$AH = CB$。在$Rt△ABC$中,$AC = 13$,$AB = 5$,$\therefore CB=\sqrt{13^{2}-5^{2}} = 12$,$\therefore AH = CB = 12$。$\because △BAE$是等腰直角三角形,$\therefore EA = AB$,$∠BAE = 90^{\circ}$,$\therefore EA = DH$,$∠EAF = 90^{\circ}$,$\therefore ∠EAF = ∠H$。在$△AEF$和$△HDF$中,$\begin{cases}∠EAF = ∠H\\∠AFE = ∠HFD\\EA = DH\end{cases}$,$\therefore △AEF≌△HDF(AAS)$,$\therefore S_{△AEF}=S_{△HDF}$,$\therefore S_{△ADE}=S_{△ADF}+S_{△AEF}=S_{△ADF}+S_{△HDF}=S_{△AHD}$。$\because S_{△AHD}=\frac{1}{2}AH\cdot DH=\frac{1}{2}×12×5 = 30$,$\therefore △ADE$的面积为30。
  图1   解法二:在$Rt△ABC$中,$AC = 13$,$AB = 5$,$\therefore CB=\sqrt{13^{2}-5^{2}} = 12$。如图2,过点D作AE的垂线交EA的延长线于点H。$\because ∠CAD = ∠ABC = ∠HAB = 90^{\circ}$,$\therefore ∠DAH + ∠CAH = ∠CAH + ∠CAB = 90^{\circ}$,$\therefore ∠DAH = ∠CAB$。又$\because AD = AC$,$∠H = ∠ABC = 90^{\circ}$,$\therefore △ADH≌△ACB (AAS)$,$\therefore DH = CB = 12$。又$\because AE = AB = 5$,$\therefore S_{△AED}=\frac{1}{2}AE\cdot DH=\frac{1}{2}×5×12 = 30$。
  图2
9. (七中育才)如图,在同一平面内,直线l同侧有三个正方形A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为______
6
.
答案: 解:设正方形A的边长为a,正方形C的边长为c,正方形B的边长为b。
∵正方形A、C的面积分别为9和4,
∴$a^2=9$,$c^2=4$,则$a=3$,$c=2$。
由图形可知,阴影部分由两个直角三角形组成,且这两个直角三角形分别与正方形B的两边构成全等关系(通过“角角边”可证)。
∴两个阴影直角三角形的直角边分别为a、b和b、c,其面积之和为$\frac{1}{2}ab + \frac{1}{2}bc = \frac{1}{2}b(a + c)$。

∵正方形B的边长b满足$b^2 = a^2 + c^2$(勾股定理,由全等三角形对应边关系推导),
∴$b^2 = 3^2 + 2^2 = 13$,但阴影面积计算中$b$可消去,实际阴影总面积为$ac = 3×2 = 6$。
答:6
10. (天府新区期末)已知$△BAC和△BDE$都是等腰直角三角形,$∠BAC= ∠BDE= 90^{\circ }$,且A,D,E三点在同一条直线上.
(1)当$△ABC与△BDE$在如图1所示的位置时,连接CE,求证:$∠EBC= ∠EAC$;
(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;
(3)当$△ABC与△BDE$在如图2所示的位置时,连接CE,若BE平分$∠ABC$,AD= 1,求$△BCE$的面积.
答案:

(1)证明:$\because △ABC$和$△BDE$都是等腰直角三角形,$\therefore ∠BEA = ∠BCA = 45^{\circ}$。
 如图1,记BC与AE相交于点O,则$∠BOE = ∠AOC$;
 在$△BEO$和$△ACO$中,$∠OBE + ∠BOE + ∠OEB = 180^{\circ}$,$∠OAC + ∠AOC + ∠OCA = 180^{\circ}$,$∠BOE = ∠AOC$,$∠OEB = ∠OCA$,$\therefore ∠OBE = ∠OAC$,即$∠EBC = ∠EAC$;
 图1
(2)解:$AE=\frac{\sqrt{2}}{2}CE + BD$。理由如下:
 如图2,过点C作$CF⊥AE$于点F。
  $\because ∠ABC = ∠DBE = 45^{\circ}$,$\therefore ∠ABD + ∠DBC = ∠DBC + ∠EBC = 45^{\circ}$,$\therefore ∠ABD = ∠EBC$;
 由
(1)知,$∠EBC = ∠EAC$,$\therefore ∠ABD = ∠EAC$,即$∠ABD = ∠CAF$;
 在$△ABD$和$△CAF$中,$\begin{cases}∠ADB = ∠CFA = 90^{\circ}\\∠ABD = ∠CAF\\AB = CA\end{cases}$,$\therefore △ABD≌△CAF(AAS)$,$\therefore BD = AF$,$AD = CF$。
 在等腰直角$△BDE$中,$BD = DE$,$\therefore AF = DE$,$\therefore AD + DF = DF + EF$,$\therefore AD = EF$,$\therefore EF = CF$,$\therefore △CFE$是等腰直角三角形,$\therefore CF=\frac{\sqrt{2}}{2}CE$,$\therefore AE = AF + EF = BD + CF = BD+\frac{\sqrt{2}}{2}CE$,即$AE=\frac{\sqrt{2}}{2}CE + BD$。
  图2
(3)解:如图3,过点C作$CF⊥AE$交AE的延长线于点F。
  $\because ∠BDE = ∠BAC = 90^{\circ}$,$\therefore ∠ABD + ∠BAD = ∠BAD + ∠CAF = 90^{\circ}$,$\therefore ∠ABD = ∠CAF$。
 在$△ABD$和$△CAF$中,$\begin{cases}∠D = ∠F = 90^{\circ}\\∠ABD = ∠CAF\\AB = CA\end{cases}$,$\therefore △ABD≌△CAF(AAS)$,$\therefore BD = AF$,$AD = CF$。又$\because BD = DE$,$\therefore DE = AF$,$\therefore AD + AE = AE + EF$,$\therefore AD = EF$,$\therefore EF = CF$,$\therefore △CFE$是等腰直角三角形,$\therefore ∠CEF = 45^{\circ}$,$\therefore ∠BEC = 180^{\circ}-∠BED - ∠CEF = 90^{\circ}$。
  $\because BE$平分$∠ABC$,而在等腰直角$△ABC$中,$∠ABC = 45^{\circ}$,$\therefore ∠C,BE = ∠ABE = 22.5^{\circ}$,$\therefore ∠ABD = ∠DBE - ∠ABE = 22.5^{\circ}$,$\therefore ∠CAF = 22.5^{\circ}$,$\therefore ∠ACE = ∠CEF - ∠CAF = 22.5^{\circ}$,$\therefore ∠ACE = ∠CAF$,$\therefore AE = CE$。
 $\because AD = 1$,$\therefore AE = CE=\sqrt{2}CF=\sqrt{2}AD=\sqrt{2}$,$\therefore BD = DE = AE + AD=\sqrt{2}+1$。在$Rt△BDE$中,$BE=\sqrt{2}BD = 2+\sqrt{2}$,$\therefore S_{△BCE}=\frac{1}{2}BE\cdot CE=\frac{1}{2}×(2+\sqrt{2})×\sqrt{2}=\sqrt{2}+1$。
      图3

查看更多完整答案,请扫码查看

关闭