第37页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
7. (石室联中)如图,在$\triangle ABC$中,$∠A = 45^{\circ}$,$∠ABC = 60^{\circ}$,$AB = 14$,$BD⊥AC$,$E$,$F$,$G分别是AD$,$BD$,$BC$上的动点,且$BF = DE$,则$\frac{\sqrt{2}}{2}EF + FG$的最小值为______。

答案:
$\frac{7\sqrt{3}}{2}$ [解析]如图,过点$D$作$DH \perp AB$于点$H$,连接$HE$,$HF$,$HG$。$\because BD \perp AC$,$\therefore \angle ADB = 90^{\circ}$。$\because \angle A = 45^{\circ}$,$\therefore \angle ABD = 45^{\circ}$,$\therefore \triangle ADB$为等腰直角三角形。$\because DH \perp AB$,$\therefore DH = AH = BH$,$\angle ADH = 45^{\circ}$。在$\triangle DEH$和$\triangle BFH$中,$\begin{cases}DE = BF\\\angle EDH = \angle FBH\\DH = BH\end{cases}$,$\therefore \triangle DEH \cong \triangle BFH(SAS)$,$\therefore HE = HF$,$\angle DHE = \angle BHF$,$\therefore \angle EHF = \angle DHE + \angle DHF = \angle BHF + \angle DHF = \angle DHB = 90^{\circ}$,$\therefore \triangle HEF$为等腰直角三角形,$\therefore HF = \frac{\sqrt{2}}{2}EF$,$\therefore \frac{\sqrt{2}}{2}EF + FG = HF + FG$。而$HF + FG \geq HG$(当且仅当$H$,$F$,$G$三点共线时取等号),$\therefore HF + FG$的最小值为$HG$的长。过点$H$作$HG' \perp BC$于点$G'$。当点$G$与点$G'$重合时,$HG$的长有最小值。在$Rt\triangle BHG'$中,$\angle HBG' = 60^{\circ}$,$BH = \frac{1}{2}AB = 7$,$\therefore BG' = \frac{1}{2}BH = \frac{7}{2}$,$\therefore HG' = \sqrt{3}BG = \frac{7\sqrt{3}}{2}$,$\therefore HF + FG$的最小值为$\frac{7\sqrt{3}}{2}$,即$\frac{\sqrt{2}}{2}EF + FG$的最小值为$\frac{7\sqrt{3}}{2}$。
$\frac{7\sqrt{3}}{2}$ [解析]如图,过点$D$作$DH \perp AB$于点$H$,连接$HE$,$HF$,$HG$。$\because BD \perp AC$,$\therefore \angle ADB = 90^{\circ}$。$\because \angle A = 45^{\circ}$,$\therefore \angle ABD = 45^{\circ}$,$\therefore \triangle ADB$为等腰直角三角形。$\because DH \perp AB$,$\therefore DH = AH = BH$,$\angle ADH = 45^{\circ}$。在$\triangle DEH$和$\triangle BFH$中,$\begin{cases}DE = BF\\\angle EDH = \angle FBH\\DH = BH\end{cases}$,$\therefore \triangle DEH \cong \triangle BFH(SAS)$,$\therefore HE = HF$,$\angle DHE = \angle BHF$,$\therefore \angle EHF = \angle DHE + \angle DHF = \angle BHF + \angle DHF = \angle DHB = 90^{\circ}$,$\therefore \triangle HEF$为等腰直角三角形,$\therefore HF = \frac{\sqrt{2}}{2}EF$,$\therefore \frac{\sqrt{2}}{2}EF + FG = HF + FG$。而$HF + FG \geq HG$(当且仅当$H$,$F$,$G$三点共线时取等号),$\therefore HF + FG$的最小值为$HG$的长。过点$H$作$HG' \perp BC$于点$G'$。当点$G$与点$G'$重合时,$HG$的长有最小值。在$Rt\triangle BHG'$中,$\angle HBG' = 60^{\circ}$,$BH = \frac{1}{2}AB = 7$,$\therefore BG' = \frac{1}{2}BH = \frac{7}{2}$,$\therefore HG' = \sqrt{3}BG = \frac{7\sqrt{3}}{2}$,$\therefore HF + FG$的最小值为$\frac{7\sqrt{3}}{2}$,即$\frac{\sqrt{2}}{2}EF + FG$的最小值为$\frac{7\sqrt{3}}{2}$。
8. (武侯区期末)如图,在$\triangle ABC$中,$AB = 4\sqrt{3}$,$∠ABC = 60^{\circ}$,$BD平分∠ABC交边AC于点D$,$AD = \frac{2}{3}CD$。在$BC边上取一点E$,连接$DE$,将线段$DE平移后得到线段BF$,连接$AF$,则线段$AF$的长度的最小值是______。

答案:
$\frac{48}{5}$ [解析]如图,过点$D$作$DM \perp BC$于点$M$,$DN \perp AB$于点$N$,过点$A$作$AG \perp BC$于点$G$,过点$F$作$FT \perp BC$于点$T$,连接$FG$,$EF$。$\because BD$平分$\angle ABC$,$DM \perp BC$,$DN \perp AB$,$\therefore DM = DN$,$\therefore \frac{S_{\triangle ABD}}{S_{\triangle BCD}} = \frac{AD}{CD} = \frac{\frac{1}{2}AB \cdot DN}{\frac{1}{2}BC \cdot DM} = \frac{AB}{BC}$。又$\because AD = \frac{2}{3}CD$,$\therefore \frac{AB}{BC} = \frac{2}{3}$。$\because AB = 4\sqrt{3}$,$\therefore BC = 6\sqrt{3}$。$\because AG \perp CB$,$\angle ABG = 60^{\circ}$,$\therefore \angle BAG = 30^{\circ}$,$\therefore BG = \frac{1}{2}AB = 2\sqrt{3}$,$\therefore AG = \sqrt{(4\sqrt{3})^{2}-(2\sqrt{3})^{2}} = 6$。$\because S_{\triangle ABC} = \frac{1}{2}BC \cdot AG = \frac{1}{2}AB \cdot DN + \frac{1}{2}BC \cdot DM$,$\therefore DM = DN = \frac{6\sqrt{3}×6}{4\sqrt{3} + 6\sqrt{3}} = \frac{18}{5}$。$\because DE // BF$,$\therefore \angle DEB = \angle EBF$。又$\because DE = BF$,$BE = EB$,$\therefore \triangle BED \cong \triangle EBF(SAS)$。$\because DM \perp BE$,$FT \perp BE$,$\therefore FT = DM = \frac{18}{5}$,$\therefore AF \geq AG + FT = 6 + \frac{18}{5} = \frac{48}{5}$,$\therefore$线段$AF$的长度的最小值为$\frac{48}{5}$。
$\frac{48}{5}$ [解析]如图,过点$D$作$DM \perp BC$于点$M$,$DN \perp AB$于点$N$,过点$A$作$AG \perp BC$于点$G$,过点$F$作$FT \perp BC$于点$T$,连接$FG$,$EF$。$\because BD$平分$\angle ABC$,$DM \perp BC$,$DN \perp AB$,$\therefore DM = DN$,$\therefore \frac{S_{\triangle ABD}}{S_{\triangle BCD}} = \frac{AD}{CD} = \frac{\frac{1}{2}AB \cdot DN}{\frac{1}{2}BC \cdot DM} = \frac{AB}{BC}$。又$\because AD = \frac{2}{3}CD$,$\therefore \frac{AB}{BC} = \frac{2}{3}$。$\because AB = 4\sqrt{3}$,$\therefore BC = 6\sqrt{3}$。$\because AG \perp CB$,$\angle ABG = 60^{\circ}$,$\therefore \angle BAG = 30^{\circ}$,$\therefore BG = \frac{1}{2}AB = 2\sqrt{3}$,$\therefore AG = \sqrt{(4\sqrt{3})^{2}-(2\sqrt{3})^{2}} = 6$。$\because S_{\triangle ABC} = \frac{1}{2}BC \cdot AG = \frac{1}{2}AB \cdot DN + \frac{1}{2}BC \cdot DM$,$\therefore DM = DN = \frac{6\sqrt{3}×6}{4\sqrt{3} + 6\sqrt{3}} = \frac{18}{5}$。$\because DE // BF$,$\therefore \angle DEB = \angle EBF$。又$\because DE = BF$,$BE = EB$,$\therefore \triangle BED \cong \triangle EBF(SAS)$。$\because DM \perp BE$,$FT \perp BE$,$\therefore FT = DM = \frac{18}{5}$,$\therefore AF \geq AG + FT = 6 + \frac{18}{5} = \frac{48}{5}$,$\therefore$线段$AF$的长度的最小值为$\frac{48}{5}$。
9. (武侯区期末)如图,在$Rt\triangle ABC$中,$∠ACB = 90^{\circ}$,$∠BAC = 30^{\circ}$,延长$BC至点D$,使$CD = BC$,连接$AD$。
(1)求证:$\triangle ABD$是等边三角形。
(2)若$E为线段CD$的中点,且$AD = 4$,$P为线段AC$上一动点,连接$EP$,$BP$。
①求$EP + \frac{1}{2}AP$的最小值;
②求$2BP + AP$的最小值。

(1)求证:$\triangle ABD$是等边三角形。
(2)若$E为线段CD$的中点,且$AD = 4$,$P为线段AC$上一动点,连接$EP$,$BP$。
①求$EP + \frac{1}{2}AP$的最小值;
②求$2BP + AP$的最小值。
答案:
(1)证明:由题意易证$\triangle ABC \cong \triangle ADC$,$\therefore AB = AD$,$\angle DAC = \angle BAC = 30^{\circ}$,$\therefore \angle BAD = 60^{\circ}$,$\therefore \triangle ABD$为等边三角形。
(2)解:①如图1,过点$P$作$PH \perp AB$于点$H$。$\because \angle PAH = 30^{\circ}$,$\therefore PH = \frac{1}{2}AP$,$\therefore EP + \frac{1}{2}AP = EP + PH$。过点$E$作$EH' \perp AB$于点$H'$,$EH'$交$AC$于点$P'$,当点$P$,$H$分别与点$P'$,$H'$重合时,$EP + PH$最小,且最小值为$EH'$的长。又$\because AD = 4$,$CD = CB$,$EC = ED$,$\angle ABC = 60^{\circ}$,$\therefore BE = 3$,$\angle BEH' = 30^{\circ}$,$\therefore BH' = \frac{3}{2}$,$\therefore EH' = \frac{3\sqrt{3}}{2}$,$\therefore EP + \frac{1}{2}AP$的最小值为$\frac{3\sqrt{3}}{2}$。
②如图2,过点$B$作$BM \perp AD$于点$M$,交$AC$于点$P$,此时$BP + \frac{1}{2}AP$最小,$MP = \frac{1}{2}AP$,$\therefore BP + \frac{1}{2}AP = BP + MP = BM = 2\sqrt{3}$,$\therefore$此时$2BP + AP = 2(BP + \frac{1}{2}AP) = 2×2\sqrt{3} = 4\sqrt{3}$。即$2BP + AP$的最小值为$4\sqrt{3}$。
(1)证明:由题意易证$\triangle ABC \cong \triangle ADC$,$\therefore AB = AD$,$\angle DAC = \angle BAC = 30^{\circ}$,$\therefore \angle BAD = 60^{\circ}$,$\therefore \triangle ABD$为等边三角形。
(2)解:①如图1,过点$P$作$PH \perp AB$于点$H$。$\because \angle PAH = 30^{\circ}$,$\therefore PH = \frac{1}{2}AP$,$\therefore EP + \frac{1}{2}AP = EP + PH$。过点$E$作$EH' \perp AB$于点$H'$,$EH'$交$AC$于点$P'$,当点$P$,$H$分别与点$P'$,$H'$重合时,$EP + PH$最小,且最小值为$EH'$的长。又$\because AD = 4$,$CD = CB$,$EC = ED$,$\angle ABC = 60^{\circ}$,$\therefore BE = 3$,$\angle BEH' = 30^{\circ}$,$\therefore BH' = \frac{3}{2}$,$\therefore EH' = \frac{3\sqrt{3}}{2}$,$\therefore EP + \frac{1}{2}AP$的最小值为$\frac{3\sqrt{3}}{2}$。
②如图2,过点$B$作$BM \perp AD$于点$M$,交$AC$于点$P$,此时$BP + \frac{1}{2}AP$最小,$MP = \frac{1}{2}AP$,$\therefore BP + \frac{1}{2}AP = BP + MP = BM = 2\sqrt{3}$,$\therefore$此时$2BP + AP = 2(BP + \frac{1}{2}AP) = 2×2\sqrt{3} = 4\sqrt{3}$。即$2BP + AP$的最小值为$4\sqrt{3}$。
查看更多完整答案,请扫码查看