第131页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
7.(嘉祥)
(1)若方程组$\left\{\begin{array}{l} 4x+y= k+1,\\ x+4y= 3\end{array} \right. 的解满足条件0\lt x+y\lt 1$,则$k$的取值范围是多少?
(2)甲、乙两位同学解关于$x,y的方程组\left\{\begin{array}{l} ax+by= 2,\\ cx-7y= 7,\end{array} \right. 甲正确地解得\left\{\begin{array}{l} x= 3,\\ y= 2;\end{array} \right. 乙因把c$看错了,解得$\left\{\begin{array}{l} x= -2,\\ y= 2.\end{array} \right. $根据上述条件,你认为能否求出原方程组中$a,b,c$的值? 若不能,请说明理由.
(1)若方程组$\left\{\begin{array}{l} 4x+y= k+1,\\ x+4y= 3\end{array} \right. 的解满足条件0\lt x+y\lt 1$,则$k$的取值范围是多少?
(2)甲、乙两位同学解关于$x,y的方程组\left\{\begin{array}{l} ax+by= 2,\\ cx-7y= 7,\end{array} \right. 甲正确地解得\left\{\begin{array}{l} x= 3,\\ y= 2;\end{array} \right. 乙因把c$看错了,解得$\left\{\begin{array}{l} x= -2,\\ y= 2.\end{array} \right. $根据上述条件,你认为能否求出原方程组中$a,b,c$的值? 若不能,请说明理由.
答案:
(1)解:将方程组中的两个方程相加,得$5x + 5y = k + 4$,则$x + y=\frac{k + 4}{5}$。
因为$0\lt x + y\lt1$,所以$0\lt\frac{k + 4}{5}\lt1$。
不等式两边同时乘以$5$,得$0\lt k + 4\lt5$。
不等式两边同时减去$4$,得$-4\lt k\lt1$。
(2)解:能。
因为甲正确解得$\begin{cases}x = 3\\y = 2\end{cases}$,代入方程组$\begin{cases}ax + by = 2\\cx - 7y = 7\end{cases}$,得$\begin{cases}3a + 2b = 2\\3c - 7×2 = 7\end{cases}$,由$3c - 14 = 7$,解得$c = 7$。
乙因把$c$看错,解得$\begin{cases}x=-2\\y = 2\end{cases}$,但$a$,$b$的值正确,代入$ax + by = 2$,得$-2a + 2b = 2$。
联立$\begin{cases}3a + 2b = 2\\-2a + 2b = 2\end{cases}$,用第一个方程减去第二个方程,得$5a = 0$,解得$a = 0$。
将$a = 0$代入$-2a + 2b = 2$,得$2b = 2$,解得$b = 1$。
综上,$a = 0$,$b = 1$,$c = 7$。
(1)解:将方程组中的两个方程相加,得$5x + 5y = k + 4$,则$x + y=\frac{k + 4}{5}$。
因为$0\lt x + y\lt1$,所以$0\lt\frac{k + 4}{5}\lt1$。
不等式两边同时乘以$5$,得$0\lt k + 4\lt5$。
不等式两边同时减去$4$,得$-4\lt k\lt1$。
(2)解:能。
因为甲正确解得$\begin{cases}x = 3\\y = 2\end{cases}$,代入方程组$\begin{cases}ax + by = 2\\cx - 7y = 7\end{cases}$,得$\begin{cases}3a + 2b = 2\\3c - 7×2 = 7\end{cases}$,由$3c - 14 = 7$,解得$c = 7$。
乙因把$c$看错,解得$\begin{cases}x=-2\\y = 2\end{cases}$,但$a$,$b$的值正确,代入$ax + by = 2$,得$-2a + 2b = 2$。
联立$\begin{cases}3a + 2b = 2\\-2a + 2b = 2\end{cases}$,用第一个方程减去第二个方程,得$5a = 0$,解得$a = 0$。
将$a = 0$代入$-2a + 2b = 2$,得$2b = 2$,解得$b = 1$。
综上,$a = 0$,$b = 1$,$c = 7$。
8.(七中育才)已知关于$x,y的方程组\left\{\begin{array}{l} ax+2y= 1+a,\\ 2x+2(a-1)y= 3,\end{array} \right. 分别求出当a$为何值时,方程组:(1)有唯一一组解;(2)无解;(3)有无穷多组解.
答案:
解:$\left\{\begin{array}{l} ax + 2y = 1 + a\enclose{circle}{1},\\ 2x + 2(a - 1)y = 3\enclose{circle}{2}.\end{array}\right.$
由$\enclose{circle}{1}×(a - 1)$,得$a(a - 1)x + 2(a - 1)y = (1 + a)(a - 1)\enclose{circle}{3}$.
由$\enclose{circle}{3} - \enclose{circle}{2}$,得$a(a - 1)x - 2x = a^{2} - 1 - 3$,
$\therefore (a^{2} - a - 2)x = a^{2} - 4$,
$\therefore (a - 2)(a + 1)x = (a + 2)(a - 2)$.
(1)当$(a - 2)(a + 1) ≠ 0$,即$a ≠ 2$且$a ≠ -1$时,方程有唯一解,原方程组有唯一一组解.
(2)当$(a - 2)(a + 1) = 0$且$(a + 2)(a - 2) ≠ 0$时,即$a = -1$时,方程无解,原方程组无解.
(3)当$(a - 2)(a + 1) = 0$且$(a + 2)(a - 2) = 0$时,即$a = 2$时,方程有无穷多解,原方程组有无穷多组解.
由$\enclose{circle}{1}×(a - 1)$,得$a(a - 1)x + 2(a - 1)y = (1 + a)(a - 1)\enclose{circle}{3}$.
由$\enclose{circle}{3} - \enclose{circle}{2}$,得$a(a - 1)x - 2x = a^{2} - 1 - 3$,
$\therefore (a^{2} - a - 2)x = a^{2} - 4$,
$\therefore (a - 2)(a + 1)x = (a + 2)(a - 2)$.
(1)当$(a - 2)(a + 1) ≠ 0$,即$a ≠ 2$且$a ≠ -1$时,方程有唯一解,原方程组有唯一一组解.
(2)当$(a - 2)(a + 1) = 0$且$(a + 2)(a - 2) ≠ 0$时,即$a = -1$时,方程无解,原方程组无解.
(3)当$(a - 2)(a + 1) = 0$且$(a + 2)(a - 2) = 0$时,即$a = 2$时,方程有无穷多解,原方程组有无穷多组解.
1. (高新区期末)方程组$\left\{\begin{array}{l} x+y+z= 23,\\ x-y= 1,\\ 2x+y-z= 20\end{array} \right. $的解是
$\left\{\begin{array}{l} x=9,\\ y=8,\\ z=6\end{array}\right.$
.
答案:
解:$\left\{\begin{array}{l} x+y+z=23,①\\ x-y=1,②\\ 2x+y-z=20,③\end{array}\right.$
①+③,得$3x+2y=43$,④
由②得$x=y+1$,⑤
把⑤代入④,得$3(y+1)+2y=43$,解得$y=8$,
把$y=8$代入⑤,得$x=9$,
把$x=9$,$y=8$代入①,得$9+8+z=23$,解得$z=6$,
所以方程组的解是$\left\{\begin{array}{l} x=9,\\ y=8,\\ z=6.\end{array}\right.$
①+③,得$3x+2y=43$,④
由②得$x=y+1$,⑤
把⑤代入④,得$3(y+1)+2y=43$,解得$y=8$,
把$y=8$代入⑤,得$x=9$,
把$x=9$,$y=8$代入①,得$9+8+z=23$,解得$z=6$,
所以方程组的解是$\left\{\begin{array}{l} x=9,\\ y=8,\\ z=6.\end{array}\right.$
2. (嘉祥)已知关于$x,y,z的方程组\left\{\begin{array}{l} 3x-y= 5,\\ 2x+y-z= 0,\\ 4a+5by-z= -22\end{array} \right. 与关于x,y,z的方程组\left\{\begin{array}{l} ax-by+z= 8,\\ x+y+5z= c,\\ 2x+3y= -4\end{array} \right. $有相同的解,则$a= $______,$b= $______,$c= $______.
2
3
-1
答案:
解:联立方程组$\left\{\begin{array}{l}3x - y = 5\\2x + 3y = -4\end{array}\right.$,
由$3x - y = 5$得$y = 3x - 5$,代入$2x + 3y = -4$,
$2x + 3(3x - 5) = -4$,
$2x + 9x - 15 = -4$,
$11x = 11$,$x = 1$,
则$y = 3×1 - 5 = -2$。
将$x = 1$,$y = -2$代入$2x + y - z = 0$,
$2×1 + (-2) - z = 0$,$z = 0$。
把$x = 1$,$y = -2$,$z = 0$代入$\left\{\begin{array}{l}ax - by + z = 8\\4a + 5by - z = -22\\x + y + 5z = c\end{array}\right.$,
得$\left\{\begin{array}{l}a + 2b = 8\\4a - 10b = -22\\c = 1 + (-2) + 0\end{array}\right.$。
解$\left\{\begin{array}{l}a + 2b = 8\\4a - 10b = -22\end{array}\right.$,
由$a = 8 - 2b$代入$4(8 - 2b) - 10b = -22$,
$32 - 8b - 10b = -22$,$-18b = -54$,$b = 3$,
则$a = 8 - 6 = 2$。
$c = -1$。
$a = 2$,$b = 3$,$c = -1$。
答案:2;3;-1
由$3x - y = 5$得$y = 3x - 5$,代入$2x + 3y = -4$,
$2x + 3(3x - 5) = -4$,
$2x + 9x - 15 = -4$,
$11x = 11$,$x = 1$,
则$y = 3×1 - 5 = -2$。
将$x = 1$,$y = -2$代入$2x + y - z = 0$,
$2×1 + (-2) - z = 0$,$z = 0$。
把$x = 1$,$y = -2$,$z = 0$代入$\left\{\begin{array}{l}ax - by + z = 8\\4a + 5by - z = -22\\x + y + 5z = c\end{array}\right.$,
得$\left\{\begin{array}{l}a + 2b = 8\\4a - 10b = -22\\c = 1 + (-2) + 0\end{array}\right.$。
解$\left\{\begin{array}{l}a + 2b = 8\\4a - 10b = -22\end{array}\right.$,
由$a = 8 - 2b$代入$4(8 - 2b) - 10b = -22$,
$32 - 8b - 10b = -22$,$-18b = -54$,$b = 3$,
则$a = 8 - 6 = 2$。
$c = -1$。
$a = 2$,$b = 3$,$c = -1$。
答案:2;3;-1
查看更多完整答案,请扫码查看