第36页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
1. (锦江区期末)如图,在$\triangle ABC$中,$∠ACB = 90^{\circ}$,$AB = \sqrt{5}$,$BC = 1$,$P是线段AB$边上的动点(不与点$A$,$B$重合),将$\triangle BCP沿CP$所在直线翻折,得到$\triangle B'CP$,连接$B'A$,当$B'A$的长度取最小值时,$AP$的长度为______。

答案:
$\frac{2\sqrt{5}}{3}$ [解析]在$\triangle ABC$中,$\because \angle ACB = 90^{\circ}$,$AB = \sqrt{5}$,$BC = 1$,$\therefore AC = \sqrt{AB^{2}-BC^{2}} = 2$。由翻转变换的性质知,$CB' = BC = 1$。$\because CB'$长度固定不变,$\therefore$当$AB' + CB'$有最小值时,$AB'$的长度有最小值。根据两点之间线段最短可知,$A$,$B'$,$C$三点在一条直线上时,$AB'$有最小值,此时$AB' = AC - B'C = 2 - 1 = 1$。如图,过点$P$作$PE \perp BC$于点$E$,$PF \perp AC$于点$F$。$\because$将$\triangle BPC$沿直线$CP$翻折,$\therefore \angle ACP = \angle BCP = 45^{\circ}$。$\because PF \perp AC$,$PE \perp BC$,$\angle ACP = \angle BCP = 45^{\circ}$,$\therefore PF = PE$,$\therefore$四边形$PECF$是正方形,$\therefore PF = PE = CE = CF$。$\because S_{\triangle ABC} = \frac{1}{2}AC \cdot BC = \frac{1}{2}AC \cdot PF + \frac{1}{2}BC \cdot PE$,$\therefore 1 = \frac{3}{2}PF$,$\therefore PF = \frac{2}{3}$,$\therefore CF = PF = \frac{2}{3}$,$\therefore AF = AC - CF = 2 - \frac{2}{3} = \frac{4}{3}$。在$Rt\triangle APF$中,$AP = \sqrt{AF^{2}+PF^{2}} = \sqrt{(\frac{4}{3})^{2}+(\frac{2}{3})^{2}} = \frac{2\sqrt{5}}{3}$。
$\frac{2\sqrt{5}}{3}$ [解析]在$\triangle ABC$中,$\because \angle ACB = 90^{\circ}$,$AB = \sqrt{5}$,$BC = 1$,$\therefore AC = \sqrt{AB^{2}-BC^{2}} = 2$。由翻转变换的性质知,$CB' = BC = 1$。$\because CB'$长度固定不变,$\therefore$当$AB' + CB'$有最小值时,$AB'$的长度有最小值。根据两点之间线段最短可知,$A$,$B'$,$C$三点在一条直线上时,$AB'$有最小值,此时$AB' = AC - B'C = 2 - 1 = 1$。如图,过点$P$作$PE \perp BC$于点$E$,$PF \perp AC$于点$F$。$\because$将$\triangle BPC$沿直线$CP$翻折,$\therefore \angle ACP = \angle BCP = 45^{\circ}$。$\because PF \perp AC$,$PE \perp BC$,$\angle ACP = \angle BCP = 45^{\circ}$,$\therefore PF = PE$,$\therefore$四边形$PECF$是正方形,$\therefore PF = PE = CE = CF$。$\because S_{\triangle ABC} = \frac{1}{2}AC \cdot BC = \frac{1}{2}AC \cdot PF + \frac{1}{2}BC \cdot PE$,$\therefore 1 = \frac{3}{2}PF$,$\therefore PF = \frac{2}{3}$,$\therefore CF = PF = \frac{2}{3}$,$\therefore AF = AC - CF = 2 - \frac{2}{3} = \frac{4}{3}$。在$Rt\triangle APF$中,$AP = \sqrt{AF^{2}+PF^{2}} = \sqrt{(\frac{4}{3})^{2}+(\frac{2}{3})^{2}} = \frac{2\sqrt{5}}{3}$。
2. (青羊区期末)如图,在$\triangle ABC$中,$AB = CB$,$AC = 10$,$S_{\triangle ABC} = 60$,$E为AB$上一动点,连接$CE$,过点$A作AF⊥CE于点F$,连接$BF$,则$BF$的最小值是______。

7
答案:
解:取AC的中点O,连接OB,以AC为直径作圆。
∵AB=CB,AC=10,
∴OB⊥AC,AO=OC=5。
∵S△ABC=60,
∴(1/2)×AC×OB=60,即(1/2)×10×OB=60,解得OB=12。
∵AF⊥CE,
∴点F在以AC为直径的圆上,OF=AO=5。
当点F在线段BO上时,BF最小,
∴BF=OB-OF=12-5=7。
答案:7
∵AB=CB,AC=10,
∴OB⊥AC,AO=OC=5。
∵S△ABC=60,
∴(1/2)×AC×OB=60,即(1/2)×10×OB=60,解得OB=12。
∵AF⊥CE,
∴点F在以AC为直径的圆上,OF=AO=5。
当点F在线段BO上时,BF最小,
∴BF=OB-OF=12-5=7。
答案:7
3. (树德实验)如图,在$Rt\triangle ADC$中,$CD⊥AC$,$AC = 8$,$DC = 6$,$AC绕点A摆动到AB$的位置,取$AB的中点E$,连接$BD$,$CE$,则$AC绕点A$摆动的过程中,$BD + CE$的最小值为______。

答案:
$2\sqrt{13}$ [解析]如图,取$AC$的中点$F$,连接$BF$,$DF$,$\therefore AF = \frac{1}{2}AC$。$\because E$是$AB$的中点,$\therefore AE = CF = \frac{1}{2}AB = \frac{1}{2}×8 = 4$。$\because AC = AB$,$\therefore AF = AE$。$\because \angle CAE = \angle BAF$,$\therefore \triangle CAE \cong \triangle BAF(SAS)$,$\therefore CE = BF$,$\therefore BD + CE = BD + BF$,$\therefore$当$D$,$B$,$F$三点共线时,$BD + CE$有最小值,最小值为$DF$。$\because BD + BF \geq FD$,$\therefore BD + CE \geq DF$。$\because CD \perp AC$,$\therefore \angle DCF = 90^{\circ}$,$\therefore DF = \sqrt{CF^{2}+CD^{2}} = \sqrt{4^{2}+6^{2}} = 2\sqrt{13}$,$\therefore BD + CE \geq 2\sqrt{13}$,$\therefore BD + CE$的最小值为$2\sqrt{13}$。
$2\sqrt{13}$ [解析]如图,取$AC$的中点$F$,连接$BF$,$DF$,$\therefore AF = \frac{1}{2}AC$。$\because E$是$AB$的中点,$\therefore AE = CF = \frac{1}{2}AB = \frac{1}{2}×8 = 4$。$\because AC = AB$,$\therefore AF = AE$。$\because \angle CAE = \angle BAF$,$\therefore \triangle CAE \cong \triangle BAF(SAS)$,$\therefore CE = BF$,$\therefore BD + CE = BD + BF$,$\therefore$当$D$,$B$,$F$三点共线时,$BD + CE$有最小值,最小值为$DF$。$\because BD + BF \geq FD$,$\therefore BD + CE \geq DF$。$\because CD \perp AC$,$\therefore \angle DCF = 90^{\circ}$,$\therefore DF = \sqrt{CF^{2}+CD^{2}} = \sqrt{4^{2}+6^{2}} = 2\sqrt{13}$,$\therefore BD + CE \geq 2\sqrt{13}$,$\therefore BD + CE$的最小值为$2\sqrt{13}$。
4. (树德实验)如图,在$\triangle ABC$中,$∠BAC = 75^{\circ}$,$∠ACB = 60^{\circ}$,$AC = 4$,则$\triangle ABC$的面积为______;$D$,$E$,$F分别为BC$,$AB$,$AC$上的动点,连接$DE$,$EF$,$FD$,则$\triangle DEF$的周长的最小值为______。

答案:
$6 + 2\sqrt{3}$ $3\sqrt{2} + \sqrt{6}$ [解析]如图1,过点$A$作$AH \perp BC$于点$H$。$\because \angle BAC = 75^{\circ}$,$\angle C = 60^{\circ}$,$\therefore \angle B = 180^{\circ} - \angle BAC - \angle C = 45^{\circ}$。又$\because AC = 4$,$\therefore$易得$CH = 2$,$AH = 2\sqrt{3}$。$\because \angle B = \angle BAH = 45^{\circ}$,$\therefore AH = BH = 2\sqrt{3}$,$\therefore BC = BH + CH = 2\sqrt{3} + 2$,$\therefore S_{\triangle ABC} = \frac{1}{2} \cdot BC \cdot AH = \frac{1}{2}×(2\sqrt{3} + 2)×2\sqrt{3} = 6 + 2\sqrt{3}$。
如图2,过点$B$作$BJ \perp AC$于点$J$,作点$F$关于$AB$的对称点$M$,点$F$关于$BC$的对称点$N$,连接$BM$,$BN$,$BF$,$MN$,$MN$交$AB$于点$E'$,交$BC$于点$D'$,此时$\triangle FE'D'$的周长$= MN$的长。$\because BF = BM = BN$,$\angle ABM = \angle ABF$,$\angle CBF = \angle CBN$,$\therefore \angle MBN = 2\angle ABC = 90^{\circ}$,$\therefore \triangle BMN$是等腰直角三角形,$\therefore BM$的值最小时,$MN$的值最小。根据垂线段最短可知,当$BF$与$BJ$重合时,$BM$的值最小。$\because BJ = \frac{2S_{\triangle ABC}}{AC} = \frac{12 + 4\sqrt{3}}{4} = 3 + \sqrt{3}$,$\therefore MN$的最小值为$\sqrt{2}BJ = \sqrt{2}×(3 + \sqrt{3}) = 3\sqrt{2} + \sqrt{6}$,$\therefore \triangle DEF$的周长的最小值为$3\sqrt{2} + \sqrt{6}$。
$6 + 2\sqrt{3}$ $3\sqrt{2} + \sqrt{6}$ [解析]如图1,过点$A$作$AH \perp BC$于点$H$。$\because \angle BAC = 75^{\circ}$,$\angle C = 60^{\circ}$,$\therefore \angle B = 180^{\circ} - \angle BAC - \angle C = 45^{\circ}$。又$\because AC = 4$,$\therefore$易得$CH = 2$,$AH = 2\sqrt{3}$。$\because \angle B = \angle BAH = 45^{\circ}$,$\therefore AH = BH = 2\sqrt{3}$,$\therefore BC = BH + CH = 2\sqrt{3} + 2$,$\therefore S_{\triangle ABC} = \frac{1}{2} \cdot BC \cdot AH = \frac{1}{2}×(2\sqrt{3} + 2)×2\sqrt{3} = 6 + 2\sqrt{3}$。
如图2,过点$B$作$BJ \perp AC$于点$J$,作点$F$关于$AB$的对称点$M$,点$F$关于$BC$的对称点$N$,连接$BM$,$BN$,$BF$,$MN$,$MN$交$AB$于点$E'$,交$BC$于点$D'$,此时$\triangle FE'D'$的周长$= MN$的长。$\because BF = BM = BN$,$\angle ABM = \angle ABF$,$\angle CBF = \angle CBN$,$\therefore \angle MBN = 2\angle ABC = 90^{\circ}$,$\therefore \triangle BMN$是等腰直角三角形,$\therefore BM$的值最小时,$MN$的值最小。根据垂线段最短可知,当$BF$与$BJ$重合时,$BM$的值最小。$\because BJ = \frac{2S_{\triangle ABC}}{AC} = \frac{12 + 4\sqrt{3}}{4} = 3 + \sqrt{3}$,$\therefore MN$的最小值为$\sqrt{2}BJ = \sqrt{2}×(3 + \sqrt{3}) = 3\sqrt{2} + \sqrt{6}$,$\therefore \triangle DEF$的周长的最小值为$3\sqrt{2} + \sqrt{6}$。
5. (天府新区期末)如图,在$\triangle ABC$中,$∠ACB = 90^{\circ}$,$BC = 3$,$AC = 4$,$E为线段BC$上一动点(点$E不与点B$,$C$重合),$F为线段AC$上一动点(点$F不与点A$,$C$重合),且始终满足$BE = CF$,连接$AE$,$BF$,则$AE + BF$的最小值为______。

答案:
$\sqrt{58}$ [解析]如图,在$AC$上截取$CD = BC = 3$,过点$D$作$DM \perp DC$,且使$DM = AC = 4$,连接$MF$。$\because CF = BE$,$\therefore DF = CE$。又$\because \angle ACE = \angle MDF = 90^{\circ}$,$\therefore \triangle MDF \cong \triangle ACE(SAS)$,$\therefore MF = AE$,$\therefore AE + BF = MF + BF$。当$M$,$F$,$B$三点共线时,$AE + BF$有最小值,最小值为$BM$。过点$B$作$BN \perp MD$,交$MD$的延长线于点$N$,则四边形$CDNB$是正方形,$\therefore DN = BC = CD = BN = 3$,$\therefore MN = DM + DN = 7$,$\therefore BM = \sqrt{BN^{2}+MN^{2}} = \sqrt{3^{2}+7^{2}} = \sqrt{58}$,$\therefore AE + BF$的最小值为$\sqrt{58}$。
$\sqrt{58}$ [解析]如图,在$AC$上截取$CD = BC = 3$,过点$D$作$DM \perp DC$,且使$DM = AC = 4$,连接$MF$。$\because CF = BE$,$\therefore DF = CE$。又$\because \angle ACE = \angle MDF = 90^{\circ}$,$\therefore \triangle MDF \cong \triangle ACE(SAS)$,$\therefore MF = AE$,$\therefore AE + BF = MF + BF$。当$M$,$F$,$B$三点共线时,$AE + BF$有最小值,最小值为$BM$。过点$B$作$BN \perp MD$,交$MD$的延长线于点$N$,则四边形$CDNB$是正方形,$\therefore DN = BC = CD = BN = 3$,$\therefore MN = DM + DN = 7$,$\therefore BM = \sqrt{BN^{2}+MN^{2}} = \sqrt{3^{2}+7^{2}} = \sqrt{58}$,$\therefore AE + BF$的最小值为$\sqrt{58}$。
6. (金牛区期末)如图,在$Rt\triangle ABC$中,$∠ACB = 90^{\circ}$,$∠ABC = 30^{\circ}$,$AC = 4$,$D为斜边AB$上一点,且$∠ADC = 45^{\circ}$,以$CD$为边、点$D为直角顶点作Rt\triangle CDP$,$M为CP$的中点,连接$MB$,则$MB$长度的最小值为______。

答案:
$3\sqrt{2}$ [解析]如图,过点$C$作$CN \perp AB$于点$N$,作$CD$的垂直平分线$l$。$\because \angle CDA = 45^{\circ}$,$CN \perp AB$,$\therefore l$经过点$N$。$\because M$是$Rt\triangle CDP$的斜边的中点,$\therefore$点$M$到点$C$的距离等于点$M$到点$D$的距离,$\therefore$点$M$在直线$l$上。过点$B$作$BM' \perp l$于点$M'$,$\therefore$当点$M$与点$M'$重合时$MB$最短。$\because AC = 4$,$\angle ABC = 30^{\circ}$,$\angle ACB = 90^{\circ}$,$\therefore \angle A = 60^{\circ}$,$AB = 8$,$\therefore \angle ACN = 30^{\circ}$,$BC = \sqrt{8^{2}-4^{2}} = 4\sqrt{3}$,$\therefore AN = 2$,$\therefore BN = 8 - 2 = 6$。由已知易得$CD // BM'$,$\therefore \angle M'BD = \angle CDN = 45^{\circ}$,$\therefore BM' = \frac{6}{\sqrt{2}} = 3\sqrt{2}$,故$MB$长度的最小值为$3\sqrt{2}$。
$3\sqrt{2}$ [解析]如图,过点$C$作$CN \perp AB$于点$N$,作$CD$的垂直平分线$l$。$\because \angle CDA = 45^{\circ}$,$CN \perp AB$,$\therefore l$经过点$N$。$\because M$是$Rt\triangle CDP$的斜边的中点,$\therefore$点$M$到点$C$的距离等于点$M$到点$D$的距离,$\therefore$点$M$在直线$l$上。过点$B$作$BM' \perp l$于点$M'$,$\therefore$当点$M$与点$M'$重合时$MB$最短。$\because AC = 4$,$\angle ABC = 30^{\circ}$,$\angle ACB = 90^{\circ}$,$\therefore \angle A = 60^{\circ}$,$AB = 8$,$\therefore \angle ACN = 30^{\circ}$,$BC = \sqrt{8^{2}-4^{2}} = 4\sqrt{3}$,$\therefore AN = 2$,$\therefore BN = 8 - 2 = 6$。由已知易得$CD // BM'$,$\therefore \angle M'BD = \angle CDN = 45^{\circ}$,$\therefore BM' = \frac{6}{\sqrt{2}} = 3\sqrt{2}$,故$MB$长度的最小值为$3\sqrt{2}$。
查看更多完整答案,请扫码查看