第16页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
12. (2024·绥化)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是-2和-5.则原来的方程是 (
A. $x^{2}+6x+5=0$
B. $x^{2}-7x+10=0$
C. $x^{2}-5x+2=0$
D. $x^{2}-6x-10=0$
B
)A. $x^{2}+6x+5=0$
B. $x^{2}-7x+10=0$
C. $x^{2}-5x+2=0$
D. $x^{2}-6x-10=0$
答案:
B
13. (2023·乐山)若关于x的一元二次方程$x^{2}-8x+m=0$两根为$x_{1},x_{2}$,且$x_{1}=3x_{2}$,则m的值为 (
A. 4
B. 8
C. 12
D. 16
C
)A. 4
B. 8
C. 12
D. 16
答案:
C
14. 若实数a,b分别满足$a^{2}-4a+3=0,b^{2}-4b+3=0$,且$a≠b$,则$\frac {1}{a}+\frac {1}{b}$的值为
$\frac {4}{3}$
.
答案:
$\frac {4}{3}$
15. 已知关于x的一元二次方程$x^{2}-4x-2m+5=0$有两个不相等的实数根.
(1)求实数m的取值范围;
(2)若该方程的两个根都是符号相同的整数,求整数m的值.
(1)求实数m的取值范围;
(2)若该方程的两个根都是符号相同的整数,求整数m的值.
答案:
(1) 根据题意得$\Delta = (-4)^{2} - 4(-2m + 5) > 0$,解得$m > \frac {1}{2}$;所以实数 m 的取值范围为$m > \frac {1}{2}$.
(2) 设$x_{1}$,$x_{2}$是方程的两根,根据题意得$x_{1} + x_{2} = 4 > 0$,$x_{1}x_{2} = -2m + 5 > 0$,解得$m < \frac {5}{2}$,而$m > \frac {1}{2}$,所以 m 的取值范围为$\frac {1}{2} < m < \frac {5}{2}$,因为 m 为整数,所以$m = 1$或$m = 2$,当$m = 1$时,方程两根都是整数;当$m = 2$时,方程两根都不是整数;所以整数 m 的值为 1.
(1) 根据题意得$\Delta = (-4)^{2} - 4(-2m + 5) > 0$,解得$m > \frac {1}{2}$;所以实数 m 的取值范围为$m > \frac {1}{2}$.
(2) 设$x_{1}$,$x_{2}$是方程的两根,根据题意得$x_{1} + x_{2} = 4 > 0$,$x_{1}x_{2} = -2m + 5 > 0$,解得$m < \frac {5}{2}$,而$m > \frac {1}{2}$,所以 m 的取值范围为$\frac {1}{2} < m < \frac {5}{2}$,因为 m 为整数,所以$m = 1$或$m = 2$,当$m = 1$时,方程两根都是整数;当$m = 2$时,方程两根都不是整数;所以整数 m 的值为 1.
16. (2024·遂宁)已知关于x的一元二次方程$x^{2}-(m+2)x+m-1=0$.
(1)求证:无论m取何值,方程都有两个不相等的实数根;
(2)如果方程的两个实数根为$x_{1},x_{2}$,且$x_{1}^{2}+x_{2}^{2}-x_{1}x_{2}=9$,求m的值.
(1)求证:无论m取何值,方程都有两个不相等的实数根;
(2)如果方程的两个实数根为$x_{1},x_{2}$,且$x_{1}^{2}+x_{2}^{2}-x_{1}x_{2}=9$,求m的值.
-2或1
答案:
(1) $x^{2} - (m + 2)x + m - 1 = 0$,$a = 1$,$b = -(m + 2)$,$c = m - 1$,$\Delta = b^{2} - 4ac = [-(m + 2)]^{2} - 4×1×(m - 1) = m^{2} + 4m + 4 - 4m + 4 = m^{2} + 8$. $\because m^{2} ≥ 0$,$\therefore \Delta > 0$. $\therefore$ 无论 m 取何值,方程都有两个不相等的实数根;
(2) 设方程$x^{2} - (m + 2)x + m - 1 = 0$的两个实数根为$x_{1}$,$x_{2}$,则$x_{1} + x_{2} = m + 2$,$x_{1}x_{2} = m - 1$. $\because x_{1}^{2} + x_{2}^{2} - x_{1}x_{2} = 9$,即$(x_{1} + x_{2})^{2} - 3x_{1}x_{2} = 9$,$\therefore (m + 2)^{2} - 3(m - 1) = 9$. 整理,得$m^{2} + m - 2 = 0$,$\therefore (m + 2)(m - 1) = 0$. 解得$m_{1} = -2$,$m_{2} = 1$,$\therefore$ m 的值为 -2 或 1.
(1) $x^{2} - (m + 2)x + m - 1 = 0$,$a = 1$,$b = -(m + 2)$,$c = m - 1$,$\Delta = b^{2} - 4ac = [-(m + 2)]^{2} - 4×1×(m - 1) = m^{2} + 4m + 4 - 4m + 4 = m^{2} + 8$. $\because m^{2} ≥ 0$,$\therefore \Delta > 0$. $\therefore$ 无论 m 取何值,方程都有两个不相等的实数根;
(2) 设方程$x^{2} - (m + 2)x + m - 1 = 0$的两个实数根为$x_{1}$,$x_{2}$,则$x_{1} + x_{2} = m + 2$,$x_{1}x_{2} = m - 1$. $\because x_{1}^{2} + x_{2}^{2} - x_{1}x_{2} = 9$,即$(x_{1} + x_{2})^{2} - 3x_{1}x_{2} = 9$,$\therefore (m + 2)^{2} - 3(m - 1) = 9$. 整理,得$m^{2} + m - 2 = 0$,$\therefore (m + 2)(m - 1) = 0$. 解得$m_{1} = -2$,$m_{2} = 1$,$\therefore$ m 的值为 -2 或 1.
17. (2023·通辽)阅读材料:
材料1:关于x的一元二次方程$ax^{2}+bx+c=0(a≠0)$的两个实数根$x_{1},x_{2}$和系数a,b,c,有如下关系:$x_{1}+x_{2}=-\frac {b}{a},x_{1}x_{2}=\frac {c}{a}$.
材料2:已知一元二次方程$x^{2}-x-1=0$的两个实数根分别为m,n,求$m^{2}n+mn^{2}$的值.
解:$\because m,n$是一元二次方程$x^{2}-x-1=0$的两个实数根,
$\therefore m+n=1,mn=-1$.
则$m^{2}n+mn^{2}=mn(m+n)=-1×1=-1$.
根据上述材料,结合你所学的知识,完成下列问题:
(1)应用:一元二次方程$2x^{2}+3x-1=0$的两个实数根为$x_{1},x_{2}$,则$x_{1}+x_{2}=$
(2)类比:已知一元二次方程$2x^{2}+3x-1=0$的两个实数根为m,n,求$m^{2}+n^{2}$的值;
解:$\because$ 一元二次方程$2x^{2} + 3x - 1 = 0$的两根分别为 m,n,$\therefore m + n = -\frac {3}{2}$,$mn = -\frac {1}{2}$,$\therefore m^{2} + n^{2} = (m + n)^{2} - 2mn = \frac {9}{4} + 1 = \frac {13}{4}$
(3)提升:已知实数s,t满足$2s^{2}+3s-1=0,2t^{2}+3t-1=0$且$s≠t$,求$\frac {1}{s}-\frac {1}{t}$的值.
解:$\because$ 实数 s,t 满足$2s^{2} + 3s - 1 = 0$,$2t^{2} + 3t - 1 = 0$,且$s ≠ t$,$\therefore$ s,t 是一元二次方程$2x^{2} + 3x - 1 = 0$的两个实数根,$\therefore s + t = -\frac {3}{2}$,$st = -\frac {1}{2}$. $\because (t - s)^{2} = (t + s)^{2} - 4st = (-\frac {3}{2})^{2} - 4×(-\frac {1}{2}) = \frac {17}{4}$,$\therefore t - s = ±\frac {\sqrt {17}}{2}$,$\therefore \frac {1}{s} - \frac {1}{t} = \frac {t - s}{st} = \frac {±\frac {\sqrt {17}}{2}}{-\frac {1}{2}} = ±\sqrt {17}$
材料1:关于x的一元二次方程$ax^{2}+bx+c=0(a≠0)$的两个实数根$x_{1},x_{2}$和系数a,b,c,有如下关系:$x_{1}+x_{2}=-\frac {b}{a},x_{1}x_{2}=\frac {c}{a}$.
材料2:已知一元二次方程$x^{2}-x-1=0$的两个实数根分别为m,n,求$m^{2}n+mn^{2}$的值.
解:$\because m,n$是一元二次方程$x^{2}-x-1=0$的两个实数根,
$\therefore m+n=1,mn=-1$.
则$m^{2}n+mn^{2}=mn(m+n)=-1×1=-1$.
根据上述材料,结合你所学的知识,完成下列问题:
(1)应用:一元二次方程$2x^{2}+3x-1=0$的两个实数根为$x_{1},x_{2}$,则$x_{1}+x_{2}=$
$-\frac {3}{2}$
, $x_{1}x_{2}=$$-\frac {1}{2}$
.(2)类比:已知一元二次方程$2x^{2}+3x-1=0$的两个实数根为m,n,求$m^{2}+n^{2}$的值;
解:$\because$ 一元二次方程$2x^{2} + 3x - 1 = 0$的两根分别为 m,n,$\therefore m + n = -\frac {3}{2}$,$mn = -\frac {1}{2}$,$\therefore m^{2} + n^{2} = (m + n)^{2} - 2mn = \frac {9}{4} + 1 = \frac {13}{4}$
(3)提升:已知实数s,t满足$2s^{2}+3s-1=0,2t^{2}+3t-1=0$且$s≠t$,求$\frac {1}{s}-\frac {1}{t}$的值.
解:$\because$ 实数 s,t 满足$2s^{2} + 3s - 1 = 0$,$2t^{2} + 3t - 1 = 0$,且$s ≠ t$,$\therefore$ s,t 是一元二次方程$2x^{2} + 3x - 1 = 0$的两个实数根,$\therefore s + t = -\frac {3}{2}$,$st = -\frac {1}{2}$. $\because (t - s)^{2} = (t + s)^{2} - 4st = (-\frac {3}{2})^{2} - 4×(-\frac {1}{2}) = \frac {17}{4}$,$\therefore t - s = ±\frac {\sqrt {17}}{2}$,$\therefore \frac {1}{s} - \frac {1}{t} = \frac {t - s}{st} = \frac {±\frac {\sqrt {17}}{2}}{-\frac {1}{2}} = ±\sqrt {17}$
答案:
(1) $-\frac {3}{2}$,$-\frac {1}{2}$;
(2) $\because$ 一元二次方程$2x^{2} + 3x - 1 = 0$的两根分别为 m,n,$\therefore m + n = -\frac {3}{2}$,$mn = -\frac {1}{2}$,$\therefore m^{2} + n^{2} = (m + n)^{2} - 2mn = \frac {9}{4} + 1 = \frac {13}{4}$;
(3) $\because$ 实数 s,t 满足$2s^{2} + 3s - 1 = 0$,$2t^{2} + 3t - 1 = 0$,且$s ≠ t$,$\therefore$ s,t 是一元二次方程$2x^{2} + 3x - 1 = 0$的两个实数根,$\therefore s + t = -\frac {3}{2}$,$st = -\frac {1}{2}$. $\because (t - s)^{2} = (t + s)^{2} - 4st = (-\frac {3}{2})^{2} - 4×(-\frac {1}{2}) = \frac {17}{4}$,$\therefore t - s = ±\frac {\sqrt {17}}{2}$,$\therefore \frac {1}{s} - \frac {1}{t} = \frac {t - s}{st} = \frac {±\frac {\sqrt {17}}{2}}{-\frac {1}{2}} = ±\sqrt {17}$.
(1) $-\frac {3}{2}$,$-\frac {1}{2}$;
(2) $\because$ 一元二次方程$2x^{2} + 3x - 1 = 0$的两根分别为 m,n,$\therefore m + n = -\frac {3}{2}$,$mn = -\frac {1}{2}$,$\therefore m^{2} + n^{2} = (m + n)^{2} - 2mn = \frac {9}{4} + 1 = \frac {13}{4}$;
(3) $\because$ 实数 s,t 满足$2s^{2} + 3s - 1 = 0$,$2t^{2} + 3t - 1 = 0$,且$s ≠ t$,$\therefore$ s,t 是一元二次方程$2x^{2} + 3x - 1 = 0$的两个实数根,$\therefore s + t = -\frac {3}{2}$,$st = -\frac {1}{2}$. $\because (t - s)^{2} = (t + s)^{2} - 4st = (-\frac {3}{2})^{2} - 4×(-\frac {1}{2}) = \frac {17}{4}$,$\therefore t - s = ±\frac {\sqrt {17}}{2}$,$\therefore \frac {1}{s} - \frac {1}{t} = \frac {t - s}{st} = \frac {±\frac {\sqrt {17}}{2}}{-\frac {1}{2}} = ±\sqrt {17}$.
查看更多完整答案,请扫码查看