第92页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
8. 如图,在$□ ABCD$中,点$E$在边$BC$上,连接$AE$并延长,交对角线$BD$于点$F$,交$DC$的延长线于点$G$。如果$\frac{CE}{BE}=\frac{2}{3}$,则$\frac{FE}{EG}=$______。

答案:
$8.\frac{9}{16}$
9. 如图,点$C$在$\angle AOB$的内部,$\angle OCA=\angle OCB$,$\angle OCA$与$\angle AOB$互补。若$AC = 1.5$,$BC = 2$,则$OC=$______。

答案:
$9.\sqrt{3}$
10. 如图,$\triangle OAB$与$\triangle OCD$是以点$O$为位似中心的位似图形,相似比为$3:4$,$\angle OCD = 90^{\circ}$,$\angle AOB = 60^{\circ}$,若点$B$的坐标是$(6,0)$,则点$C$的坐标是______。

答案:
$10.(2,2\sqrt{3})$
11. 如图,在矩形$ABCD$中,将$\angle ABC$绕点$A$按逆时针方向旋转一定角度后,$BC$的对应边$B'C'$交$CD$于点$G$,连接$BB',CC'$。若$AD = 7$,$CG = 4$,$AB' = B'G$,则$\frac{CC'}{BB'}=$______(结果保留根号)。

答案:
$11.\frac{\sqrt{74}}{5}$
12. 在矩形$ABCD$中,$AB = 6$,$BC = 8$,点$P$在矩形$ABCD$的内部,点$E$在边$BC$上,满足$\triangle PBE\backsim\triangle DBC$,若$\triangle APD$是等腰三角形,则$PE$的长为______。
答案:
$12.\frac{6}{5}$或3
13. (16分)如图,在正方形$ABCD$中,$P$是$BC$上一点,且$BP = 3PC$,$Q$是$CD$的中点。求证:$\triangle ADQ\backsim\triangle QCP$。

答案:
13.证明:设正方形ABCD的边长为a,$\therefore AD = BC = CD = a.$又$\because Q$是CD的中点,$\therefore DQ = CQ = \frac{1}{2}a.$
$\because BP = 3PC,$$\therefore PC = \frac{1}{4}a.\therefore AQ = \sqrt{a^{2} + \frac{a^{2}}{4}} = \frac{\sqrt{5}a}{2},PQ = \sqrt{\frac{a^{2}}{4} + \frac{a^{2}}{16}} = \frac{\sqrt{5}a}{4}.\therefore \frac{AD}{QC} = \frac{DQ}{CP} = \frac{AQ}{QP} = 2.$
$\therefore \triangle ADQ \sim \triangle QCP.$
$\because BP = 3PC,$$\therefore PC = \frac{1}{4}a.\therefore AQ = \sqrt{a^{2} + \frac{a^{2}}{4}} = \frac{\sqrt{5}a}{2},PQ = \sqrt{\frac{a^{2}}{4} + \frac{a^{2}}{16}} = \frac{\sqrt{5}a}{4}.\therefore \frac{AD}{QC} = \frac{DQ}{CP} = \frac{AQ}{QP} = 2.$
$\therefore \triangle ADQ \sim \triangle QCP.$
14. (18分)如图,$\triangle ABC$是等边三角形,点$D,E$在$BC$所在的直线上,且$AB· AC = BD· CE$。求证:$\triangle ABD\backsim\triangle ECA$。

答案:
14.证明:$\because \triangle ABC$是等边三角形,$\therefore \angle ABC = \angle ACB = 60^{\circ},$$\therefore 180^{\circ} - \angle ABC = 180^{\circ} - \angle ACB,$
$\therefore \angle ABD = \angle ECA.$又$\because AB · AC = BD · CE,$
$\therefore \frac{AB}{EC} = \frac{BD}{CA},\therefore \triangle ABD \sim \triangle ECA.$
$\therefore \angle ABD = \angle ECA.$又$\because AB · AC = BD · CE,$
$\therefore \frac{AB}{EC} = \frac{BD}{CA},\therefore \triangle ABD \sim \triangle ECA.$
15. (18分)在$\triangle ABC$中,$AB = AC = 5$,$BC = 6$,过边$AB$上一点$D$作$DE// BC,DF// AC$,分别交边$AC,BC$于点$E$和$F$。
(1)如图1,求证:$\triangle ADE\backsim\triangle DBF$。
(2)如图1,若四边形$DECF$是菱形,求$DE$的长。
(3)如图2,若以$D,E,F$三点为顶点的三角形与$\triangle BDF$相似,求$AD$的长。

(1)如图1,求证:$\triangle ADE\backsim\triangle DBF$。
(2)如图1,若四边形$DECF$是菱形,求$DE$的长。
(3)如图2,若以$D,E,F$三点为顶点的三角形与$\triangle BDF$相似,求$AD$的长。
答案:
15.
(1)证明:$\because DE // BC,$DF // AC,$\therefore \angle ADE = \angle B,$
$\angle A = \angle BDF,$$\therefore \triangle ADE \sim \triangle DBF.(2)$解:设DE = x.
$\because $四边形DECF是菱形,$\therefore DE = DF = CF = CE = x,$
$\therefore AE = 5 - x,$$BF = 6 - x.\because \triangle ADE \sim \triangle DBF,$
$\therefore \frac{DE}{BF} = \frac{AE}{DF},$即$\frac{x}{6 - x} = \frac{5 - x}{x},$解得$x = \frac{30}{11}.\therefore DE$的长
为$\frac{30}{11}.(3)$解:设AD = AE = t,则$CE = 5 - t.\because DE //$
BC,DF // AC,$\therefore $四边形DECF为平行四边形,$\therefore DF =$
$CE = 5 - t,DE = CF.\because DE // BC,$$\therefore \angle ADE = \angle B,$
$\angle AED = \angle C,$$\therefore \triangle ADE \sim \triangle ABC,$$\therefore \frac{AD}{AB} = \frac{DE}{BC},$
即$\frac{t}{5} = \frac{DE}{6},\therefore DE = \frac{6}{5}t,\therefore CF = \frac{6}{5}t,\therefore BF = 6 -$
$\frac{6}{5}t.\because \angle EDF = \angle BFD,$$\therefore $当$\frac{DE}{BF} = \frac{DF}{DF}$时,$\triangle EDF \sim$
$\triangle BFD,$$\therefore BF = DE,$即$6 - \frac{6}{5}t = \frac{6}{5}t,$解得$t = \frac{5}{2};$
当$\frac{DE}{DF} = \frac{DF}{BF}$时,$\triangle EDF \sim \triangle DFB,$$\therefore \frac{\frac{6}{5}t}{5 - t} = \frac{5 - t}{6 - \frac{6}{5}t},$
解得t = 5(舍去)或$t = \frac{125}{61}.$综上所述,AD的长为$\frac{5}{2}$
或$\frac{125}{61}.$
(1)证明:$\because DE // BC,$DF // AC,$\therefore \angle ADE = \angle B,$
$\angle A = \angle BDF,$$\therefore \triangle ADE \sim \triangle DBF.(2)$解:设DE = x.
$\because $四边形DECF是菱形,$\therefore DE = DF = CF = CE = x,$
$\therefore AE = 5 - x,$$BF = 6 - x.\because \triangle ADE \sim \triangle DBF,$
$\therefore \frac{DE}{BF} = \frac{AE}{DF},$即$\frac{x}{6 - x} = \frac{5 - x}{x},$解得$x = \frac{30}{11}.\therefore DE$的长
为$\frac{30}{11}.(3)$解:设AD = AE = t,则$CE = 5 - t.\because DE //$
BC,DF // AC,$\therefore $四边形DECF为平行四边形,$\therefore DF =$
$CE = 5 - t,DE = CF.\because DE // BC,$$\therefore \angle ADE = \angle B,$
$\angle AED = \angle C,$$\therefore \triangle ADE \sim \triangle ABC,$$\therefore \frac{AD}{AB} = \frac{DE}{BC},$
即$\frac{t}{5} = \frac{DE}{6},\therefore DE = \frac{6}{5}t,\therefore CF = \frac{6}{5}t,\therefore BF = 6 -$
$\frac{6}{5}t.\because \angle EDF = \angle BFD,$$\therefore $当$\frac{DE}{BF} = \frac{DF}{DF}$时,$\triangle EDF \sim$
$\triangle BFD,$$\therefore BF = DE,$即$6 - \frac{6}{5}t = \frac{6}{5}t,$解得$t = \frac{5}{2};$
当$\frac{DE}{DF} = \frac{DF}{BF}$时,$\triangle EDF \sim \triangle DFB,$$\therefore \frac{\frac{6}{5}t}{5 - t} = \frac{5 - t}{6 - \frac{6}{5}t},$
解得t = 5(舍去)或$t = \frac{125}{61}.$综上所述,AD的长为$\frac{5}{2}$
或$\frac{125}{61}.$
查看更多完整答案,请扫码查看