2025年新课程新教材导航学数学九年级上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程新教材导航学数学九年级上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课程新教材导航学数学九年级上册北师大版》

14. (12 分)如图,在矩形 $ABCD$ 中,$E$ 是边 $AD$ 上的一个动点,点 $F,G,H$ 分别是边 $BC,BE,CE$ 的中点.
(1)求证:$\triangle BGF\cong\triangle FHC$.
(2)设 $AD = a$,当四边形 $EGFH$ 是正方形时,求矩形 $ABCD$ 的面积.
答案: 14.
(1)证明:$\because$点$F$,$G$,$H$分别是边$BC$,$BE$,$CE$的中点,$\therefore FH // BE$,$FH = \frac{1}{2}BE$,$BG = GE = \frac{1}{2}BE$,$BF = CF$.$\therefore \angle CFH = \angle CBG$,$FH = BG$.$\therefore \triangle BGF \cong \triangle FHC$.
(2)解:连接$EF$,$GH$.当四边形$EGFH$是正方形时,$EF \perp GH$且$EF = GH$.$\because$在$\triangle BEC$中,点$G$,$H$分别是$BE$,$CE$的中点,$\therefore GH = \frac{1}{2}BC = \frac{1}{2}AD = \frac{1}{2}a$,$GH // BC$,$\therefore EF \perp BC$,$\therefore \angle EFB = 90^{\circ}$.$\because$四边形$ABCD$是矩形,$\therefore \angle A = \angle ABC = 90^{\circ}$.$\therefore$四边形$AEFB$是矩形,$\therefore AB = EF = GH = \frac{1}{2}a$,$\therefore$矩形$ABCD$的面积为$AB · AD = \frac{1}{2}a · a = \frac{1}{2}a^{2}$.
15. (14 分)如图 1,点 $E$ 为正方形 $ABCD$ 的边 $AB$ 上一点,$EF\perp EC$,且 $EF = EC$,连接 $AF$.
(1)求 $\angle EAF$ 的度数.
(2)如图 2,连接 $FC$ 交 $BD$ 于点 $M$,交 $AD$ 于点 $N$. 求证:$BD = AF + 2DM$.
答案: 15.
(1)解:过点$F$作$FM \perp AB$交$BA$的延长线于点$M$.$\because$四边形$ABCD$是正方形,$EF \perp EC$,$\therefore \angle B = \angle M = \angle CEF = 90^{\circ}$,$\therefore \angle MEF + \angle CEB = 90^{\circ}$,$\angle CEB + \angle BCE = 90^{\circ}$,$\therefore \angle MEF = \angle BCE$.$\because EC = FE$,$\therefore \triangle EBC \cong \triangle FME$.$\therefore FM = EB$,$EM = BC$.$\because BC = AB$,$\therefore EM = AB$,$\therefore EM - AE = AB - AE$,$\therefore AM = EB$,$\therefore FM = AM$.$\because \angle M = 90^{\circ}$,$\therefore \angle MAF = 45^{\circ}$,$\therefore \angle EAF = 180^{\circ} - 45^{\circ} = 135^{\circ}$.
(2)证明:过点$F$作$FG // AB$交$BD$于点$G$.由
(1)可知$\angle EAF = 135^{\circ}$.$\because \angle ABD = 45^{\circ}$,$\therefore \angle EAF + \angle ABD = 135^{\circ} + 45^{\circ} = 180^{\circ}$,$\therefore AF // BG$.又$\because FG // AB$,$\therefore$四边形$ABGF$为平行四边形,$\therefore AF = BG$,$FG = AB$.$\because AB = CD$,$\therefore FG = CD$.$\because AB // CD$,$\therefore FG // CD$,$\therefore \angle FGM = \angle CDM$.又$\because \angle FMG = \angle CMD$,$\therefore \triangle FGM \cong \triangle CDM$,$\therefore GM = DM$,$\therefore DG = 2DM$.$\therefore BD = BG + DG = AF + 2DM$.

查看更多完整答案,请扫码查看

关闭