2025年思维新观察九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年思维新观察九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年思维新观察九年级数学上册人教版》

【典例 1】如图,在 $ \odot O $ 中,A,C,D 三点在 $ \odot O $ 上,$ AD \perp AB $,$ AB \perp BC $,$ AB = 6 $,$ AD = 4 $,$ BC = 2 $,求 $ \odot O $ 的半径。
答案:
解:过 O 作 $ OM \perp AD $ 于 M,交 CB 的延长线于 N,连接 OA,OC,

设 $ OM = x $, $ OA = r $,
$ 2 ^ { 2 } + x ^ { 2 } = ( 6 - x ) ^ { 2 } + 4 ^ { 2 } $,
$ x = 4 $,故 $ r = 2 \sqrt { 5 } $.
变式.如图,点 A,C,D 在 $ \odot O $ 上,$ \angle A = \angle B = 90 ^ { \circ } $,$ AC = 4 $,$ AB = 6 $,$ BD = 6 $,求 $ \odot O $ 的半径长。
答案:
解:过 O 点作 $ OM \perp AC $,直线 MO 交 BD 于 N 点,连接 AO,DO,
$ AM = BN = 2 $,

设 $ ON = x $, $ OM = 6 - x $, $ OA = r $,
$ 2 ^ { 2 } + ( 6 - x ) ^ { 2 } = x ^ { 2 } + 4 ^ { 2 } $, $ x = 2 $,
$ \therefore r = 2 \sqrt { 5 } $.
【典例 2】(2022·武汉)如图是由三个大小相同的正方形组成的“品”字型轴对称图案,测得顶点 A,B 之间的距离为 5.现用一个半径为 r 的圆形纸片将其完全覆盖,则 r 的最小值是( )

A. $ \frac { 1 } { 2 } \sqrt { 17 } $
B. $ \frac { 5 } { 8 } \sqrt { 17 } $
C. $ \frac { 2 } { 3 } \sqrt { 17 } $
D. $ \frac { 3 } { 4 } \sqrt { 17 } $
答案:
B
解:设 O 点到 BC 的距离为 m,

$ m ^ { 2 } + 2 ^ { 2 } = 1 ^ { 2 } + ( 4 - m ) ^ { 2 } $,
$ m = \frac { 13 } { 8 } $,
$ \therefore r = \frac { 5 } { 8 } \sqrt { 17 } $.
变式.(2024·武昌)如图,点 P 在 $ \odot O $ 的直径 AB 上,作正方形 PCDE 和正方形 PFGH,其中 D,G 两点在 AB 所在直线上,C,E,F,H 四点都在 $ \odot O $ 上,若两个正方形的面积之和为 16,$ OP = \sqrt { 2 } $,则 DG 的长是(
$2\sqrt{14}$
)

A. $ 6 \sqrt { 2 } $
B. $ 2 \sqrt { 14 } $
C. 7
D. $ 4 \sqrt { 3 } $
答案: B
解:过 O 点作 $ OM \perp PC $, $ ON \perp PE $,垂足为 M,N,
$ \therefore OM = ON = 1 $,
$ \therefore CM = HN = EN $.
设 $ CM = HN = x $,
$ PC = x + 1 $, $ PH = x - 1 $,
$ ( x + 1 ) ^ { 2 } + ( x - 1 ) ^ { 2 } = 16 $,
$ x = \sqrt { 7 } $(负值已舍), $ DG = 2 \sqrt { 14 } $

查看更多完整答案,请扫码查看

关闭