2025年综合应用创新题典中点八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年综合应用创新题典中点八年级数学上册北师大版》

1. 下列方程组中,是三元一次方程组的是(
D
)
A. $\left\{\begin{array}{l} 2x= 5,\\ x^{2}+y= 7m,\\ x+y+z= 6\end{array}\right. $
B. $\left\{\begin{array}{l} \frac {3}{x}-y+z= -2,\\ x-2y+z= 9,\\ y= -3\end{array}\right. $
C. $\left\{\begin{array}{l} x+y-z= 7,\\ xyz= 1,\\ x-3y= 4\end{array}\right. $
D. $\left\{\begin{array}{l} x+y= 2,\\ y+z= 1,\\ x+z= 9\end{array}\right. $
答案: D
2. 解方程组$\left\{\begin{array}{l} 2x+y-3z= 5,\\ -4x-y+2z= 12,\\ 5x+y+7z= 14,\end{array}\right. $最简便的消元方法是(
B
)
A. 先消去x
B. 先消去y
C. 先消去z
D. 先消去常数项
答案: B
3. 设$□,◯ ,△$分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也保持平衡,右边应放“△”的个数为(
B
)

A. 1
B. 2
C. 3
D. 4
答案: B
4. 若$(a+1)x+5y^{b+1}+2z^{2-|a|}= 10$是一个三元一次方程,则$a= $
1
,$b= $
0
.
答案: 1;0
5. 请写出一个以$\left\{\begin{array}{l} x= 3,\\ y= 1,\\ z= -1\end{array}\right. $为解的三元一次方程:
2x+y-z=8
.
答案: (答案不唯一)$2x+y-z=8$
6. 若方程组$\left\{\begin{array}{l} a+b= 3,\\ b+c= 2,\\ c+a= 1\end{array}\right. 的解满足k= a+b+c$,则点$P(k+2,1-2k)$在第
象限.
答案:
7. 用3.50元买了面值分别为10分、20分、50分的三种邮票共18枚,其中10分邮票的总价与20分邮票的总价相同,则50分邮票买了____
3
____枚.
答案: 3
8. 解方程组:

解:
由x - 3y = - 4可得x =
3y - 4

将x = 3y - 4代入3x - 5z = 10中,得到3(3y - 4) - 5z = 10,即9y - 12 - 5z = 10,9y - 5z =
22

由3y - 4z = 5可得9y - 12z =
15

用9y - 5z = 22减去9y - 12z = 15,得:
(9y - 5z) - (9y - 12z) = 22 - 15
9y - 5z - 9y + 12z = 7
7z = 7
z =
1

把z = 1代入3y - 4z = 5,得3y - 4×1 = 5,3y = 9,y =
3

把y = 3代入x = 3y - 4,得x = 3×3 - 4 =
5

所以方程组的解为$\begin{cases}x =$
5
\\ y =
3
\\ z =
1
$\end{cases}。$
答案: 解:
由$x - 3y = - 4$可得$x = 3y - 4$。
将$x = 3y - 4$代入$3x - 5z = 10$中,得到$3(3y - 4) - 5z = 10$,即$9y - 12 - 5z = 10$,$9y - 5z = 22$。
由$3y - 4z = 5$可得$9y - 12z = 15$。
用$9y - 5z = 22$减去$9y - 12z = 15$,得:
$(9y - 5z) - (9y - 12z) = 22 - 15$
$9y - 5z - 9y + 12z = 7$
$7z = 7$
$z = 1$。
把$z = 1$代入$3y - 4z = 5$,得$3y - 4×1 = 5$,$3y = 9$,$y = 3$。
把$y = 3$代入$x = 3y - 4$,得$x = 3×3 - 4 = 5$。
所以方程组的解为$\begin{cases}x = 5 \\ y = 3 \\ z = 1\end{cases}$。
9. 已知多项式$ax^{2}+bx+c$中,a,b,c为常数,x的取值与多项式对应的值如下表:

则N的值为(
D
)
A. 15
B. 19
C. 21
D. 23
答案: D【点拨】当$x=1$时,$a+b+c=M$;①当$x=2$时,$4a+2b+c=7$。②当$x=-5$时,$25a-5b+c=M+12$;③当$x=-6$时,$36a-6b+c=N$。④③-①,得$24a-6b=12$,即$4a-b=2$。④-②,得$32a-8b=N-7$。所以$8(4a-b)=N-7$。所以$N-7=16$。所以$N=23$。
10. 一件工程,甲、乙合作2天可以完工,乙、丙合作2天,可以完成全工程的$\frac {5}{9}$;丙、甲合作2天后,剩余工程由丙单独做1天即可完工,那么由丙单独完成全部工程需要的天数是(
9
)
A. 6
B. 9
C. 12
D. 18
答案: B【点拨】设工程总量为1,甲的工作效率为x,乙的工作效率为y,丙的工作效率为z,由题意得,$\left\{\begin{array}{l} 2(x+y)=1,\\ 2(y+z)=\frac {5}{9},\\ 2(x+z)+z=1,\end{array}\right. $解得$\left\{\begin{array}{l} x=\frac {1}{3},\\ y=\frac {1}{6},\\ z=\frac {1}{9}.\end{array}\right. $$1÷\frac {1}{9}=9$(天)。所以由丙单独完成全部工程需要的天数为9。

查看更多完整答案,请扫码查看

关闭