2025年综合应用创新题典中点八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年综合应用创新题典中点八年级数学上册北师大版》

1. 解下列方程组:
(1)$\left\{\begin{array}{l} \frac {x+1}{3}= 2y,\\ 2(x+1)-y= 11;\end{array}\right. $
【解】原方程组整理,得$\left\{\begin{array}{l} x=6y - 1,\enclose{circle} {1}\\ 2x - y = 9,\enclose{circle} {2}\end{array}\right.$
把①代入②,得$2(6y - 1) - y = 9$,解得$y = $
1

把$y = 1$代入①,得$x = $
5

所以原方程组的解为$\left\{\begin{array}{l} x = 5,\\ y = 1.\end{array}\right.$
(2)$\left\{\begin{array}{l} 2x+3y= 7,\\ x-2y= 3.\end{array}\right. $
【解】$\left\{\begin{array}{l} 2x + 3y = 7,\enclose{circle} {1}\\ x - 2y = 3,\enclose{circle} {2}\end{array}\right.$
① - ②×2,得$7y = 1$,解得$y = $
$\frac{1}{7}$

将$y = \frac{1}{7}$代入②,得$x - \frac{2}{7} = 3$,解得$x = $
$\frac{23}{7}$

所以原方程组的解为$\left\{\begin{array}{l} x = \frac{23}{7},\\ y = \frac{1}{7}.\end{array}\right.$
答案: 【解】
(1)原方程组整理,得$\left\{\begin{array}{l} x=6y - 1,\enclose{circle} {1}\\ 2x - y = 9,\enclose{circle} {2}\end{array}\right.$
把①代入②,得$2(6y - 1) - y = 9$,解得$y = 1$,
把$y = 1$代入①,得$x = 5$,
所以原方程组的解为$\left\{\begin{array}{l} x = 5,\\ y = 1.\end{array}\right.$
(2)$\left\{\begin{array}{l} 2x + 3y = 7,\enclose{circle} {1}\\ x - 2y = 3,\enclose{circle} {2}\end{array}\right.$
① - ②×2,得$7y = 1$,解得$y = \frac{1}{7}$,
将$y = \frac{1}{7}$代入②,得$x - \frac{2}{7} = 3$,解得$x = \frac{23}{7}$,
所以原方程组的解为$\left\{\begin{array}{l} x = \frac{23}{7},\\ y = \frac{1}{7}.\end{array}\right.$
2. 解方程组:$\left\{\begin{array}{l} 7x-8y= 22,\\ 3x-5y= 11.\end{array}\right. $
解:
$\begin{cases}7x - 8y = 22&(1)\\3x - 5y = 11&(2)\end{cases}$
$(1)×3$得:
$21x - 24y = 66$
$(3)$
$(2)×7$得:
$21x - 35y = 77$
$(4)$
$(3) - (4)$得:
$\begin{aligned}(21x - 24y) - (21x - 35y)&=66 - 77\\21x - 24y - 21x + 35y&=-11\\11y&=-11\\y&=
-1
\end{aligned}$
把$y = -1$代入$(2)$得:
$\begin{aligned}3x - 5×(-1)&=11\\3x + 5&=11\\3x&=11 - 5\\3x&=6\\x&=
2
\end{aligned}$
所以方程组的解为$\begin{cases} x =
2
\\ y =
-1
\end{cases}$。
答案: 解:
$\begin{cases}7x - 8y = 22&(1)\\3x - 5y = 11&(2)\end{cases}$
$(1)×3$得:$21x - 24y = 66$ $(3)$
$(2)×7$得:$21x - 35y = 77$ $(4)$
$(3) - (4)$得:
$\begin{aligned}(21x - 24y) - (21x - 35y)&=66 - 77\\21x - 24y - 21x + 35y&=-11\\11y&=-11\\y&=-1\end{aligned}$
把$y = -1$代入$(2)$得:
$\begin{aligned}3x - 5×(-1)&=11\\3x + 5&=11\\3x&=11 - 5\\3x&=6\\x&=2\end{aligned}$
所以方程组的解为$\begin{cases} x = 2 \\ y = -1 \end{cases}$。
3. 新考法 图表信息法 已知关于x,y的二元一次方程$ax+by= c$的解如下表:
| x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
| y | … | $\frac {14}{3}$ | 4 | $\frac {10}{3}$ | $\frac {8}{3}$ | 2 | $\frac {4}{3}$ | … |
关于x,y的二元一次方程$mx-ny= k$的解如下表:
| x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
| y | … | $\frac {11}{2}$ | 4 | $\frac {5}{2}$ | 1 | $-\frac {1}{2}$ | -2 | … |
则关于x,y的二元一次方程组$\left\{\begin{array}{l} a(x+y)+b(x-y)= c,\\ m(x+y)-n(x-y)= k\end{array}\right. $的解为
$\left\{\begin{array}{l} x = \frac{1}{2},\\ y = - \frac{7}{2}\end{array}\right.$
.
答案: $\left\{\begin{array}{l} x = \frac{1}{2},\\ y = \frac{7}{2}\end{array}\right.$【点拨】由题表可知方程组$\left\{\begin{array}{l} ax + by = c,\\ mx - ny = k\end{array}\right.$的解为$\left\{\begin{array}{l} x = - 3,\\ y = 4,\end{array}\right.$所以由二元一次方程组$\left\{\begin{array}{l} a(x + y) + b(x - y) = c,\\ m(x + y) - n(x - y) = k\end{array}\right.$可得$\left\{\begin{array}{l} x + y = - 3,\\ x - y = 4,\end{array}\right.$解得$\left\{\begin{array}{l} x = \frac{1}{2},\\ y = - \frac{7}{2}.\end{array}\right.$所以方程组$\left\{\begin{array}{l} a(x + y) + b(x - y) = c,\\ m(x + y) - n(x - y) = k\end{array}\right.$的解为$\left\{\begin{array}{l} x = \frac{1}{2},\\ y = - \frac{7}{2}.\end{array}\right.$
4. 新考法 阅读类比法 先阅读,然后解方程组.
解方程组$\begin{cases}{ x-y-1= 0,①}\\{4(x-y)-y= 5,②}\end{cases}$时,可由①得$x - y = 1$,③
再将③代入②,得$4×1 - y = 5$,解得$y = -1$,
从而进一步求得$\begin{cases} x=0 \\ y=-1 \end{cases}$这种方法被称为“整体代入法”.
请用这样的方法解方程组$\begin{cases} 2x - 3y - 2 = 0, \\frac{2x - 3y + 5}{7} + 2y = 9. \end{cases}$
解:由$2x - 3y - 2 = 0$得
$2x - 3y = 2$

将③代入$\frac{2x - 3y + 5}{7}+2y = 9$,得
$\frac{2 + 5}{7}+2y = 9$

$1 + 2y = 9$

移项可得
$2y = 9 - 1$

$2y = 8$

解得
$y = 4$

把$y = 4$代入③得
$2x - 3×4 = 2$

$2x - 12 = 2$

移项可得
$2x = 2 + 12$

$2x = 14$

解得
$x = 7$

所以方程组的解为
$\begin{cases}x = 7\\y = 4\end{cases}$
答案: 解:由$2x - 3y - 2 = 0$得$2x - 3y = 2$ ③
将③代入$\frac{2x - 3y + 5}{7}+2y = 9$,得$\frac{2 + 5}{7}+2y = 9$
即$1 + 2y = 9$,
移项可得$2y = 9 - 1$,
即$2y = 8$,
解得$y = 4$。
把$y = 4$代入③得$2x - 3×4 = 2$,
即$2x - 12 = 2$,
移项可得$2x = 2 + 12$,
即$2x = 14$,
解得$x = 7$。
所以方程组的解为$\begin{cases}x = 7\\y = 4\end{cases}$。
5. 三名同学对问题“若方程组$\left\{\begin{array}{l} a_{1}x+b_{1}y= c_{1},\\ a_{2}x+b_{2}y= c_{2}\end{array}\right. 的解是\left\{\begin{array}{l} x= 3,\\ y= 4,\end{array}\right. 求方程组\left\{\begin{array}{l} 3a_{1}x+2b_{1}y= 5c_{1},\\ 3a_{2}x+2b_{2}y= 5c_{2}\end{array}\right. $的解”提出了各自的想法. 甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决.”参考他们的讨论,谈谈你的看法(若不能求解,请说明原因;若能够求解,请写出求解过程).
【解】可以求解。
因为$\left\{\begin{array}{l} 3a_{1}x + 2b_{1}y = 5c_{1},\\ 3a_{2}x + 2b_{2}y = 5c_{2}\end{array}\right.$可变形为$\left\{\begin{array}{l} \frac{3}{5}a_{1}x + \frac{2}{5}b_{1}y = c_{1},\\ \frac{3}{5}a_{2}x + \frac{2}{5}b_{2}y = c_{2},\end{array}\right.$①
设$m = \frac{3}{5}x$,$n = \frac{2}{5}y$,
所以方程组①可变为$\left\{\begin{array}{l} a_{1}m + b_{1}n = c_{1},\\ a_{2}m + b_{2}n = c_{2}.\end{array}\right.$②
又因为$\left\{\begin{array}{l} a_{1}x + b_{1}y = c_{1},\\ a_{2}x + b_{2}y = c_{2}\end{array}\right.$的解是$\left\{\begin{array}{l} x = 3,\\ y = 4,\end{array}\right.$
所以方程组②的解是$\left\{\begin{array}{l} m = 3,\\ n = 4.\end{array}\right.$
所以$\frac{3}{5}x = 3$,$\frac{2}{5}y = 4$。所以$x = 5$,$y = 10$。
所以方程组$\left\{\begin{array}{l} 3a_{1}x + 2b_{1}y = 5c_{1},\\ 3a_{2}x + 2b_{2}y = 5c_{2}\end{array}\right.$的解是$\left\{\begin{array}{l} x = 5,\\ y = 10.\end{array}\right.$
答案: 【解】可以求解。
因为$\left\{\begin{array}{l} 3a_{1}x + 2b_{1}y = 5c_{1},\\ 3a_{2}x + 2b_{2}y = 5c_{2}\end{array}\right.$可变形为$\left\{\begin{array}{l} \frac{3}{5}a_{1}x + \frac{2}{5}b_{1}y = c_{1},\\ \frac{3}{5}a_{2}x + \frac{2}{5}b_{2}y = c_{2},\end{array}\right.$①
设$m = \frac{3}{5}x$,$n = \frac{2}{5}y$,
所以方程组①可变为$\left\{\begin{array}{l} a_{1}m + b_{1}n = c_{1},\\ a_{2}m + b_{2}n = c_{2}.\end{array}\right.$②
又因为$\left\{\begin{array}{l} a_{1}x + b_{1}y = c_{1},\\ a_{2}x + b_{2}y = c_{2}\end{array}\right.$的解是$\left\{\begin{array}{l} x = 3,\\ y = 4,\end{array}\right.$
所以方程组②的解是$\left\{\begin{array}{l} m = 3,\\ n = 4.\end{array}\right.$
所以$\frac{3}{5}x = 3$,$\frac{2}{5}y = 4$。所以$x = 5$,$y = 10$。
所以方程组$\left\{\begin{array}{l} 3a_{1}x + 2b_{1}y = 5c_{1},\\ 3a_{2}x + 2b_{2}y = 5c_{2}\end{array}\right.$的解是$\left\{\begin{array}{l} x = 5,\\ y = 10.\end{array}\right.$

查看更多完整答案,请扫码查看

关闭