第99页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
20. (2025·福建)如图,四边形$ABCD$内接于$\odot O$,$AD$,$BC$的延长线相交于点$E$,$AC$,$BD$相交于点$F$。$G$是$AB$上一点,$GD$交$AC$于点$H$,且$AB = AC$,$BG = DG$。
(1) 求证:$\angle ABC=\angle DBE+\angle E$;
(2) 求证:$AH^{2}=HF· HC$;
(3) 若$\tan\angle ABC=\sqrt{5}$,$AD = 2DE$,$CD=\sqrt{6}$,求$\triangle AGH$的周长。

(1) 求证:$\angle ABC=\angle DBE+\angle E$;
(2) 求证:$AH^{2}=HF· HC$;
(3) 若$\tan\angle ABC=\sqrt{5}$,$AD = 2DE$,$CD=\sqrt{6}$,求$\triangle AGH$的周长。
答案:
20.
(1)$\because AB = AC$,$\therefore\angle ABC = \angle ACB$。$\because\overset{\frown}{AB}=\overset{\frown}{AB}$,
$\therefore\angle ACB = \angle ADB$。$\therefore\angle ABC = \angle ADB$。$\because\overset{\frown}{AD}=\overset{\frown}{AD}$,$\therefore\angle ABD = \angle ACD$。$\because BG = DG$,$\therefore\angle BDG = \angle ABD = \angle ACD$。又$\because\angle DHF = \angle CHD$,$\therefore\triangle HDF\sim\triangle HCD$。$\therefore\frac{HF}{HD}=\frac{HD}{HC}$。$\therefore HD^{2}=HF· HC$。由
(1)知,
$\angle ABC = \angle DBE + \angle E$,又$\because\angle ABC = \angle DBE + \angle ABD$,
$\therefore\angle ABD = \angle E$。$\therefore\angle BDG = \angle E$。$\because\angle ADB = \angle ADG + \angle BDG$,$\angle ADC = \angle BDC + \angle E$,$\therefore\angle ADG = \angle DAC$。$\therefore AH = DH$。$\therefore AH^{2}=HF· HC$。
(3)由
(2)知,$AH = DH$,
$\therefore\triangle AGH$的周长为$AG + GH + AH = AG + GH + DH = AG + DG = AG + BG = AB$。设$DE = m$,则$AD = 2DE = 2m$,
$AE = AD + DE = 3m$。由
(2)可知,$\angle ACD = \angle E$,又$\because\angle CAD = \angle EAC$,$\therefore\triangle ACD\sim\triangle AEC$。$\therefore\frac{AC}{AE}=\frac{AD}{AC}=\frac{CD}{EC}$。$\therefore AC^{2}=AD· AE = 6m^{2}$。$\therefore AC=\sqrt{6}m$。又$\because CD=\sqrt{6}$,$\therefore\frac{\sqrt{6}m}{3m}=\frac{\sqrt{6}}{EC}$。$\therefore EC = 3$。过点$C$作$CP\perp AE$,垂足为$P$,则$\angle CPD = \angle CPE = 90^{\circ}$。$\because$四边形$ABCD$是圆内接四边形,$\therefore\angle ADC + \angle ABC = 180^{\circ}$。又$\because\angle ADC + \angle CDP = 180^{\circ}$,$\therefore\angle CDP = \angle ABC$。$\therefore\tan\angle CDP=\tan\angle ABC=\sqrt{5}$。
$\therefore$在$Rt\triangle DCP$中,$\frac{PC}{PD}=\sqrt{5}$,即$PC=\sqrt{5}PD$。$\therefore CD=\sqrt{PD^{2}+PC^{2}}=\sqrt{6}PD$。$\therefore\sqrt{6}PD=\sqrt{6}$,$\therefore PD = 1$。$\therefore PE = DE - DP = m - 1$。在$Rt\triangle CPE$中,$PE^{2}+PC^{2}=CE^{2}$,$\therefore(m - 1)^{2}+(\sqrt{5})^{2}=3^{2}$,解得$m = 3$或$m = -1$(舍去)。$\therefore AB = AC = 3\sqrt{6}$。$\therefore\triangle AGH$的周长为$3\sqrt{6}$。
(1)$\because AB = AC$,$\therefore\angle ABC = \angle ACB$。$\because\overset{\frown}{AB}=\overset{\frown}{AB}$,
$\therefore\angle ACB = \angle ADB$。$\therefore\angle ABC = \angle ADB$。$\because\overset{\frown}{AD}=\overset{\frown}{AD}$,$\therefore\angle ABD = \angle ACD$。$\because BG = DG$,$\therefore\angle BDG = \angle ABD = \angle ACD$。又$\because\angle DHF = \angle CHD$,$\therefore\triangle HDF\sim\triangle HCD$。$\therefore\frac{HF}{HD}=\frac{HD}{HC}$。$\therefore HD^{2}=HF· HC$。由
(1)知,
$\angle ABC = \angle DBE + \angle E$,又$\because\angle ABC = \angle DBE + \angle ABD$,
$\therefore\angle ABD = \angle E$。$\therefore\angle BDG = \angle E$。$\because\angle ADB = \angle ADG + \angle BDG$,$\angle ADC = \angle BDC + \angle E$,$\therefore\angle ADG = \angle DAC$。$\therefore AH = DH$。$\therefore AH^{2}=HF· HC$。
(3)由
(2)知,$AH = DH$,
$\therefore\triangle AGH$的周长为$AG + GH + AH = AG + GH + DH = AG + DG = AG + BG = AB$。设$DE = m$,则$AD = 2DE = 2m$,
$AE = AD + DE = 3m$。由
(2)可知,$\angle ACD = \angle E$,又$\because\angle CAD = \angle EAC$,$\therefore\triangle ACD\sim\triangle AEC$。$\therefore\frac{AC}{AE}=\frac{AD}{AC}=\frac{CD}{EC}$。$\therefore AC^{2}=AD· AE = 6m^{2}$。$\therefore AC=\sqrt{6}m$。又$\because CD=\sqrt{6}$,$\therefore\frac{\sqrt{6}m}{3m}=\frac{\sqrt{6}}{EC}$。$\therefore EC = 3$。过点$C$作$CP\perp AE$,垂足为$P$,则$\angle CPD = \angle CPE = 90^{\circ}$。$\because$四边形$ABCD$是圆内接四边形,$\therefore\angle ADC + \angle ABC = 180^{\circ}$。又$\because\angle ADC + \angle CDP = 180^{\circ}$,$\therefore\angle CDP = \angle ABC$。$\therefore\tan\angle CDP=\tan\angle ABC=\sqrt{5}$。
$\therefore$在$Rt\triangle DCP$中,$\frac{PC}{PD}=\sqrt{5}$,即$PC=\sqrt{5}PD$。$\therefore CD=\sqrt{PD^{2}+PC^{2}}=\sqrt{6}PD$。$\therefore\sqrt{6}PD=\sqrt{6}$,$\therefore PD = 1$。$\therefore PE = DE - DP = m - 1$。在$Rt\triangle CPE$中,$PE^{2}+PC^{2}=CE^{2}$,$\therefore(m - 1)^{2}+(\sqrt{5})^{2}=3^{2}$,解得$m = 3$或$m = -1$(舍去)。$\therefore AB = AC = 3\sqrt{6}$。$\therefore\triangle AGH$的周长为$3\sqrt{6}$。
21. (2025·成都)如图,在$□ ABCD$中,点$E$在$BC$边上,点$B$关于直线$AE$的对称点$F$落在$□ ABCD$内,射线$AF$交射线$DC$于点$G$,交射线$BC$于点$P$,射线$EF$交$CD$边于点$Q$。
【特例感知】
(1) 如图①,当$CE = BE$时,点$P$在$BC$的延长线上,求证:$\triangle EFP\cong\triangle ECQ$。
【问题探究】
(2) 在(1)的条件下,若$CG = 3$,$GQ = 5$,求$DQ$的长。
【拓展延伸】
(3) 如图②,当$CE = 2BE$时,点$P$在$BC$边上。若$\frac{CQ}{DQ}=\frac{1}{n}$,求$\frac{CG}{DG}$的值(用含$n$的代数式表示)。

【特例感知】
(1) 如图①,当$CE = BE$时,点$P$在$BC$的延长线上,求证:$\triangle EFP\cong\triangle ECQ$。
【问题探究】
(2) 在(1)的条件下,若$CG = 3$,$GQ = 5$,求$DQ$的长。
【拓展延伸】
(3) 如图②,当$CE = 2BE$时,点$P$在$BC$边上。若$\frac{CQ}{DQ}=\frac{1}{n}$,求$\frac{CG}{DG}$的值(用含$n$的代数式表示)。
答案:
21.
(1)由折叠的性质,得$\angle B = \angle AFE$,$BE = FE$。$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$。$\therefore\angle B = \angle PCG$。$\therefore\angle AFE = \angle PCG$。$\because\angle AFE = \angle QFG$,$\therefore\angle PCG = \angle QFG$。$\because\angle FGQ = \angle CGP$,$\therefore\angle CQE = \angle P$。$\because CE = BE$,$BE = EF$,$\therefore EF = EC$。又$\because\angle CFQ = \angle FEP$,$\therefore\triangle EFP\cong\triangle ECQ$。
(2)$\because\triangle EFP\cong\triangle ECQ$,$\therefore EQ = EP$。$\because EF = EC$,$\therefore FQ = CP$。$\because\angle FGQ = \angle CGP$,$\angle CQE = \angle P$,$\therefore\triangle FQG\cong\triangle CPG$。$\therefore FG = CG = 3$,$GQ = GP = 5$。由折叠的性质,得$AF = AB$。$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$,$AB = CD$。$\therefore\triangle CGP\sim\triangle BAP$。$\therefore\frac{CG}{BA}=\frac{PG}{PA}$。$\therefore\frac{3}{AB}=\frac{5}{AB + 3 + 5}$,解得$AB = 12$。$\therefore CD = 12$。$\therefore DQ = CD - CG - QG = 4$。
(3)延长$AD$,$EQ$交于点$M$。设$CQ = a$,$BE = b$。$\because\frac{CQ}{DQ}=\frac{1}{n}$,$CE = 2BE$,$\therefore DQ = an$,$EC = 2b$。$\therefore AB = CD=(n + 1)a$,$AD = 3b$。由折叠的性质,得$AF = AB=(n + 1)a$。$\because AD// BC$,即$DM// EC$,$\therefore\triangle DQM\sim\triangle CQE$。$\therefore\frac{DM}{CE}=\frac{DQ}{CQ}$,即$\frac{DM}{2b}=\frac{an}{a}=n$。$\therefore DM = 2bn$。$\because$四边形$ABCD$是平行四边形,$\therefore\angle B = \angle ADQ$。由折叠的性质,得$\angle AFE = \angle B$。$\because\angle AFQ + \angle AFE = 180^{\circ}$,$\therefore\angle AFQ + \angle ADQ = 180^{\circ}$。$\therefore\angle DAF + \angle DQF = 180^{\circ}$。$\because\angle EQC + \angle DQF = 180^{\circ}$,$\therefore\angle EQC = \angle DAF$。$\because AD// BC$,$\therefore\angle DAF = \angle FPE$。$\therefore\angle EQC = \angle FPE$。又$\because\angle FEP = \angle CEQ$,$\therefore\triangle FEP\sim\triangle CEQ$。$\therefore\frac{EF}{EC}=\frac{FP}{CQ}$,即$\frac{b}{2b}=\frac{FP}{a}$。$\therefore FP=\frac{1}{2}a$。$\because AD// BC$,$\therefore\triangle AMF\sim\triangle PEF$。$\therefore\frac{AM}{PE}=\frac{AF}{PF}$。$\therefore PE=\frac{AM· PF}{AF}=\frac{(3b + 2bn)·\frac{1}{2}a}{(n + 1)a}=\frac{3 + 2n}{2n + 2}b$。$\therefore CP = EC - EP = 2b-\frac{3 + 2n}{2n + 2}b=\frac{(2n + 1)b}{2n + 2}$。又$\because PC// AD$,$\therefore\triangle GPC\sim\triangle GAD$。$\therefore\frac{CG}{DG}=\frac{CP}{DA}=\frac{\frac{(2n + 1)b}{2n + 2}}{3b}=\frac{2n + 1}{6n + 6}$。
(1)由折叠的性质,得$\angle B = \angle AFE$,$BE = FE$。$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$。$\therefore\angle B = \angle PCG$。$\therefore\angle AFE = \angle PCG$。$\because\angle AFE = \angle QFG$,$\therefore\angle PCG = \angle QFG$。$\because\angle FGQ = \angle CGP$,$\therefore\angle CQE = \angle P$。$\because CE = BE$,$BE = EF$,$\therefore EF = EC$。又$\because\angle CFQ = \angle FEP$,$\therefore\triangle EFP\cong\triangle ECQ$。
(2)$\because\triangle EFP\cong\triangle ECQ$,$\therefore EQ = EP$。$\because EF = EC$,$\therefore FQ = CP$。$\because\angle FGQ = \angle CGP$,$\angle CQE = \angle P$,$\therefore\triangle FQG\cong\triangle CPG$。$\therefore FG = CG = 3$,$GQ = GP = 5$。由折叠的性质,得$AF = AB$。$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$,$AB = CD$。$\therefore\triangle CGP\sim\triangle BAP$。$\therefore\frac{CG}{BA}=\frac{PG}{PA}$。$\therefore\frac{3}{AB}=\frac{5}{AB + 3 + 5}$,解得$AB = 12$。$\therefore CD = 12$。$\therefore DQ = CD - CG - QG = 4$。
(3)延长$AD$,$EQ$交于点$M$。设$CQ = a$,$BE = b$。$\because\frac{CQ}{DQ}=\frac{1}{n}$,$CE = 2BE$,$\therefore DQ = an$,$EC = 2b$。$\therefore AB = CD=(n + 1)a$,$AD = 3b$。由折叠的性质,得$AF = AB=(n + 1)a$。$\because AD// BC$,即$DM// EC$,$\therefore\triangle DQM\sim\triangle CQE$。$\therefore\frac{DM}{CE}=\frac{DQ}{CQ}$,即$\frac{DM}{2b}=\frac{an}{a}=n$。$\therefore DM = 2bn$。$\because$四边形$ABCD$是平行四边形,$\therefore\angle B = \angle ADQ$。由折叠的性质,得$\angle AFE = \angle B$。$\because\angle AFQ + \angle AFE = 180^{\circ}$,$\therefore\angle AFQ + \angle ADQ = 180^{\circ}$。$\therefore\angle DAF + \angle DQF = 180^{\circ}$。$\because\angle EQC + \angle DQF = 180^{\circ}$,$\therefore\angle EQC = \angle DAF$。$\because AD// BC$,$\therefore\angle DAF = \angle FPE$。$\therefore\angle EQC = \angle FPE$。又$\because\angle FEP = \angle CEQ$,$\therefore\triangle FEP\sim\triangle CEQ$。$\therefore\frac{EF}{EC}=\frac{FP}{CQ}$,即$\frac{b}{2b}=\frac{FP}{a}$。$\therefore FP=\frac{1}{2}a$。$\because AD// BC$,$\therefore\triangle AMF\sim\triangle PEF$。$\therefore\frac{AM}{PE}=\frac{AF}{PF}$。$\therefore PE=\frac{AM· PF}{AF}=\frac{(3b + 2bn)·\frac{1}{2}a}{(n + 1)a}=\frac{3 + 2n}{2n + 2}b$。$\therefore CP = EC - EP = 2b-\frac{3 + 2n}{2n + 2}b=\frac{(2n + 1)b}{2n + 2}$。又$\because PC// AD$,$\therefore\triangle GPC\sim\triangle GAD$。$\therefore\frac{CG}{DG}=\frac{CP}{DA}=\frac{\frac{(2n + 1)b}{2n + 2}}{3b}=\frac{2n + 1}{6n + 6}$。
查看更多完整答案,请扫码查看