2026年通城学典全国中考试题分类精粹中考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年通城学典全国中考试题分类精粹中考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年通城学典全国中考试题分类精粹中考数学》

第67页
15. (2025·福建)如图,点 E,F 分别在 AB,AD 的延长线上,∠CBE = ∠CDF,∠ACB = ∠ACD. 求证:AB = AD.
答案: 15. $\because \angle CBE = \angle CDF$,$\therefore 180^{\circ}-\angle CBE = 180^{\circ}-\angle CDF$。
$\therefore \angle ABC = \angle ADC$。 在$\triangle ABC$和$\triangle ADC$中,
$\begin{cases} \angle ABC = \angle ADC, \\ \angle ACB = \angle ACD, \therefore \triangle ABC \cong \triangle ADC. \therefore AB = AD \\ AC = AC, \end{cases}$
16. (2025·河北)如图,四边形 ABCD 的对角线 AC,BD 相交于点 E,AC = AD,∠ACB = ∠ADB,点 F 在 ED 上,∠BAF = ∠EAD.
(1)求证:△ABC≌△AFD;
(2)若 BE = FE,求证:AC⊥BD.
答案: 16.
(1) $\because \angle BAF = \angle EAD$,$\therefore \angle BAF - \angle CAF = \angle EAD - \angle CAF$。$\therefore \angle BAC = \angle FAD$。在$\triangle ABC$和$\triangle AFD$
中,$\begin{cases} \angle BAC = \angle FAD, \\ AC = AD, \therefore \triangle ABC \cong \triangle AFD \end{cases}$
(2) 由
(1),得
$\angle ACB = \angle ADF$,
$\therefore \triangle ABC \cong \triangle AFD$,$\therefore AB = AF$。$\because BE = FE$,$\therefore AC \perp BF$,
即$AC \perp BD$
17. (2025·内江)如图,点 B,F,C,E 在同一条直线上,AC = DF,∠A = ∠D,AB//DE.
(1)求证:△ABC≌△DEF;
(2)若 BF = 4,FC = 3,求 BE 的长.
答案: 17.
(1) $\because AB // DE$,$\therefore \angle B = \angle E$。 在$\triangle ABC$和$\triangle DEF$
中,$\begin{cases} \angle B = \angle E, \\ \angle A = \angle D, \therefore \triangle ABC \cong \triangle DEF \end{cases}$
(2) 由
(1),可知
$AC = DF$,
$\therefore \triangle ABC \cong \triangle DEF$,$\therefore BC = EF$。$\therefore BF + CF = EC + CF$。
$\therefore BF = EC$。$\because BF = 4$,$\therefore EC = 4$。$\because FC = 3$,$\therefore BE = BF + CF + EC = 4 + 3 + 4 = 11$
18. (2025·南充)如图,在五边形 ABCDE 中,AB = AE,AC = AD,∠BAD = ∠EAC. 求证:
(1)△ABC≌△AED;
(2)∠BCD = ∠EDC.
答案: 18.
(1) $\because \angle BAD = \angle EAC$,$\therefore \angle BAD - \angle CAD = \angle EAC - \angle CAD$。$\therefore \angle BAC = \angle EAD$。在$\triangle ABC$和$\triangle AED$
中,$\begin{cases} AB = AE, \\ \angle BAC = \angle EAD, \therefore \triangle ABC \cong \triangle AED \end{cases}$
(2) $\because AC = AC = AD$,
$\therefore \angle ACD = \angle ADC$。由
(1)可知,$\triangle ABC \cong \triangle AED$,
$\therefore \angle ACB = \angle ADE$。$\therefore \angle ACB + \angle ACD = \angle ADE + \angle ADC$。$\therefore \angle BCD = \angle EDC$
19. (2025·福建)如图,△ABC 是等边三角形,D 是 AB 的中点,CE⊥BC,垂足为 C,EF 是由 CD 沿 CE 方向平移得到的,连接 DF. 已知 EF 过点 A,BE 交 CD 于点 G.
(1)求∠DCE 的度数;
(2)求证:△CEG 是等边三角形.
答案: 19.
(1) $\because \triangle ABC$是等边三角形,$\therefore \angle ACB = 60^{\circ}$。$\because D$是
$AB$的中点,$\therefore \angle DCB = \angle DCA = \frac{1}{2} \angle ACB = \frac{1}{2} × 60^{\circ} = 30^{\circ}$。$\because CE \perp BC$,$\therefore \angle BCE = 90^{\circ}$。$\therefore \angle DCE = \angle BCE - \angle DCB = 90^{\circ} - 30^{\circ} = 60^{\circ}$
(2) 由平移可知,$CD // EF$,
$\therefore \angle EAC = \angle DCA = 30^{\circ}$。 又$\because \angle ECA = \angle BCE - \angle ACB = 90^{\circ} - 60^{\circ} = 30^{\circ}$,$\therefore \angle EAC = \angle ECA$。$\therefore AE = CE$,
$\angle AEC = 180^{\circ}-\angle ECA - \angle EAC = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$。
又$\because AB = CB$,$\therefore BE$垂直平分$AC$。$\therefore \angle GEC = \frac{1}{2} \angle AEC =$
$\frac{1}{2} × 120^{\circ} = 60^{\circ}$。由
(1)知,$\angle GCE = 60^{\circ}$,$\therefore \angle EGC = 60^{\circ}$。
$\therefore \angle GEC = \angle GCE = \angle EGC$。$\therefore \triangle CEG$是等边三角形

查看更多完整答案,请扫码查看

关闭