第158页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
23. (2025·浙江)现有六张分别标有数字1,2,3,4,5,6的卡片,其中标有数字1,4,5的卡片在甲手中,标有数字2,3,6的卡片在乙手中.两人各随机出一张卡片,甲出的卡片上的数字比乙大的概率是
$\frac{4}{9}$
.
答案:
23. $\frac{4}{9}$
24. (2025·成都)从-1,1,2这三个数中任取两个数分别作为$a$,$b$的值,则关于$x$的一元二次方程$ax^{2}+bx+1=0$有实数根的概率为
$\frac{1}{2}$
.
答案:
24. $\frac{1}{2}$
25. (2025·龙东地区)如图,随机闭合开关K₁,K₂,K₃中的两个,能让两个灯泡L₁,L₂同时发光的概率为

$\frac{1}{3}$
.
答案:
25. $\frac{1}{3}$
26. (2025·山西)如图所示为创新小组设计的一款小程序的界面示意图,程序规则为每点击一次按钮,“☺”就从一个格子向左或向右随机移动到相邻的一个格子.当“☺”位于格子A时,小明连续点击两次按钮,“☺”回到格子A的概率是

$\frac{1}{2}$
.
答案:
26. $\frac{1}{2}$
27. (2025·苏州)为了弘扬社会主义核心价值观,学校决定组织“立鸿鹄之志,做有为少年”主题观影活动,建议同学们利用周末时间自主观看.现有A,B,C共3部电影,甲、乙两名同学分别从中任意选择1部电影观看.
(1)甲同学选择A电影的概率为
(2)求甲、乙两名同学选择不同电影的概率.
(1)甲同学选择A电影的概率为
$\frac{1}{3}$
;(2)求甲、乙两名同学选择不同电影的概率.
答案:
27.
(1) $\frac{1}{3}$
(2) 画树状图如图所示. 由图可知,共有 9 种等可能的结果,其中甲、乙两名同学选择不同电影的结果有 6 种, $\therefore$ 甲、乙两名同学选择不同电影的概率为 $\frac{6}{9}=\frac{2}{3}$
27.
(1) $\frac{1}{3}$
(2) 画树状图如图所示. 由图可知,共有 9 种等可能的结果,其中甲、乙两名同学选择不同电影的结果有 6 种, $\therefore$ 甲、乙两名同学选择不同电影的概率为 $\frac{6}{9}=\frac{2}{3}$
28. (2025·南京)盒子A中放有标号为1,3的小球,盒子B中放有标号为1,2,4的小球.现从A中随机取1个小球,从B中随机取2个小球.
(1)取出的3个小球中,没有标号为4的小球的概率为
(2)求所取小球的标号均不相同的概率.
(1)取出的3个小球中,没有标号为4的小球的概率为
$\frac{1}{3}$
;(2)求所取小球的标号均不相同的概率.
答案:
28.
(1) $\frac{1}{3}$
(2) 画树状图如图所示. 由图可知,共有 12 种等可能的结果,其中所取小球的标号均不相同的结果有 8 种, $\therefore P$(所取小球的标号均不相同)$=\frac{8}{12}=\frac{2}{3}$
28.
(1) $\frac{1}{3}$
(2) 画树状图如图所示. 由图可知,共有 12 种等可能的结果,其中所取小球的标号均不相同的结果有 8 种, $\therefore P$(所取小球的标号均不相同)$=\frac{8}{12}=\frac{2}{3}$
29. (2025·常州)在5张相同的小纸条上,分别写有①-1;②0;③1;④正数;⑤负数.将这5张小纸条做成5支签,①②③放在不透明的盒子A中搅匀,④⑤放在不透明的盒子B中搅匀.
(1)从盒子A中任意抽出1支签,抽到0的概率是
(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的数与文字描述相符合的概率.
(1)从盒子A中任意抽出1支签,抽到0的概率是
$\frac{1}{3}$
.(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的数与文字描述相符合的概率.
答案:
29.
(1) $\frac{1}{3}$
(2) 画树状图如图所示. 由图可知,共有 6 种等可能的结果,其中抽到的数与文字描述相符合的结果有 2 种, $\therefore$ 抽到的数与文字描述相符合的概率为$\frac{2}{6}=\frac{1}{3}$
29.
(1) $\frac{1}{3}$
(2) 画树状图如图所示. 由图可知,共有 6 种等可能的结果,其中抽到的数与文字描述相符合的结果有 2 种, $\therefore$ 抽到的数与文字描述相符合的概率为$\frac{2}{6}=\frac{1}{3}$
查看更多完整答案,请扫码查看