第76页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
22. (2025·龙东地区)如图,在矩形$ABCD$中,$AD = 6$,$\angle CAD = 60^{\circ}$,$E$是边$CD$的中点,$F$是对角线$AC$上一动点,作点$C$关于直线$EF$的对称点$P$,若$PE\perp AC$,则$CF$的长为

3或9
。
答案:
22.3或9 解析:分两种情况讨论:①当点P在AC上方时,如图①,连接PC,交直线EF于点G,延长PE交AC于点H.
∵ 在矩形ABCD中,∠D = 90°,AD = 6,∠CAD = 60°,
∴ ∠ACD = 30°.
∴ AC = 2AD = 12,CD = $\sqrt{AC^2 - AD^2} = 6\sqrt{3}$.
∵ E是边CD的中点,
∴ CE = $\frac{1}{2}CD = 3\sqrt{3}$.
∵ P为点C关于直线EF的对称点,
∴ PE = CE = $3\sqrt{3}$,∠EGC = ∠EGP = 90°.
∵ PH⊥AC,
∴ ∠EHC = ∠EHF = 90°.
∵ ∠ACD = 30°,
∴ ∠PEC = ∠EHC + ∠ACD = 120°.
∵ PE = CE,
∴ ∠CPE = ∠PCE = $\frac{1}{2}(180° - ∠PEC) = 30°$.
∵ ∠PEG = ∠FEH,∠ECP = ∠EHF = 90°,
∴ ∠CPE = ∠EFC = 30°.
∴ ∠EFC = ∠ACD = 30°.
∴ EF = EC.
∵ EH⊥CF,
∴ CH = FH = $\frac{1}{2}CF$.在Rt△CEH中,CE = $3\sqrt{3}$,∠HCE = 30°,
∴ CH = $CE · \cos\angle HCE = 3\sqrt{3} × \frac{\sqrt{3}}{2} = \frac{9}{2}$.
∴ CF = 2CH = 9. ②当点P在AC下方时,如图②,连接PC,交直线EF于点G,设PE与AC交于点H.
∵ PE⊥AC,
∴ ∠CHE = 90°.
∵ ∠ACD = 30°,
∴ ∠CEP = 60°.
∴ CH = CE·cos∠ACD = $3\sqrt{3} × \frac{\sqrt{3}}{2} = \frac{9}{2}$.由对称的性质,得PE = CE,∠PEG = ∠CEG,
∴ ∠HEF = 30°,△CEP是等边三角形.
∴ ∠P = 60°,CE = PC = PE = $3\sqrt{3}$.
∵ PE⊥AC,
∴ EH = PH = $\frac{1}{2}PE = \frac{3\sqrt{3}}{2}$.
∴ HF = EH·tan∠HEF = $\frac{3\sqrt{3}}{2} × \frac{\sqrt{3}}{3} = \frac{3}{2}$.
∴ CF = CH - HF = $\frac{9}{2} - \frac{3}{2} = 3$.综上所述,CF的长为3或9.
22.3或9 解析:分两种情况讨论:①当点P在AC上方时,如图①,连接PC,交直线EF于点G,延长PE交AC于点H.
∵ 在矩形ABCD中,∠D = 90°,AD = 6,∠CAD = 60°,
∴ ∠ACD = 30°.
∴ AC = 2AD = 12,CD = $\sqrt{AC^2 - AD^2} = 6\sqrt{3}$.
∵ E是边CD的中点,
∴ CE = $\frac{1}{2}CD = 3\sqrt{3}$.
∵ P为点C关于直线EF的对称点,
∴ PE = CE = $3\sqrt{3}$,∠EGC = ∠EGP = 90°.
∵ PH⊥AC,
∴ ∠EHC = ∠EHF = 90°.
∵ ∠ACD = 30°,
∴ ∠PEC = ∠EHC + ∠ACD = 120°.
∵ PE = CE,
∴ ∠CPE = ∠PCE = $\frac{1}{2}(180° - ∠PEC) = 30°$.
∵ ∠PEG = ∠FEH,∠ECP = ∠EHF = 90°,
∴ ∠CPE = ∠EFC = 30°.
∴ ∠EFC = ∠ACD = 30°.
∴ EF = EC.
∵ EH⊥CF,
∴ CH = FH = $\frac{1}{2}CF$.在Rt△CEH中,CE = $3\sqrt{3}$,∠HCE = 30°,
∴ CH = $CE · \cos\angle HCE = 3\sqrt{3} × \frac{\sqrt{3}}{2} = \frac{9}{2}$.
∴ CF = 2CH = 9. ②当点P在AC下方时,如图②,连接PC,交直线EF于点G,设PE与AC交于点H.
∵ PE⊥AC,
∴ ∠CHE = 90°.
∵ ∠ACD = 30°,
∴ ∠CEP = 60°.
∴ CH = CE·cos∠ACD = $3\sqrt{3} × \frac{\sqrt{3}}{2} = \frac{9}{2}$.由对称的性质,得PE = CE,∠PEG = ∠CEG,
∴ ∠HEF = 30°,△CEP是等边三角形.
∴ ∠P = 60°,CE = PC = PE = $3\sqrt{3}$.
∵ PE⊥AC,
∴ EH = PH = $\frac{1}{2}PE = \frac{3\sqrt{3}}{2}$.
∴ HF = EH·tan∠HEF = $\frac{3\sqrt{3}}{2} × \frac{\sqrt{3}}{3} = \frac{3}{2}$.
∴ CF = CH - HF = $\frac{9}{2} - \frac{3}{2} = 3$.综上所述,CF的长为3或9.
23. (2025·眉山)如图,正方形$ABCD$的边长为4,点$E$在边$AD$上运动(不与点$A$,$D$重合),$\angle CDP = 45^{\circ}$,点$F$在射线$DP$上,且$AE:DF = 1:\sqrt{2}$,连接$BF$,交$CD$于点$G$,连接$EB$,$EF$,$EG$。有下列结论:①$\sin\angle BFE=\frac{\sqrt{2}}{2}$;②$AE^{2}+CG^{2}=EG^{2}$;③$\triangle DEF$的面积的最大值是2;④若$AE=\frac{1}{3}AD$,则$G$是线段$CD$的中点。其中,正确的是

①③④
(填序号)。
答案:
23.①③④ 解析:在AB上截取AH = AE,连接EH.
∵ AE∶DF = 1∶$\sqrt{2}$,
∴ 设AE = AH = a,则DF = $\sqrt{2}a$.
∵ 四边形ABCD是正方形,且边长为4,
∴ AB = AD = CB = CD = 4,∠BAD = ∠ADC = ∠C = ∠ABC = 90°.
∴ △AHE是等腰直角三角形.
∴ ∠AEH = ∠AHE = 45°,且由勾股定理,得HE = $\sqrt{AE^2 + AH^2} = \sqrt{2}a$.
∵ HE = DF.
∵ ∠CDP = 45°,
∴ ∠EDF = ∠ADC + ∠CDP = 135°.
∵ ∠BHE = 180° - ∠AHE = 135°,且由勾股定理,得HE = $\sqrt{2}a$,DF = $\sqrt{2}a$,BH = ED.在△BHE和△EDF中,
$\begin{cases} HE = DF, \\ \angle BHE = \angle EDF, \\ BH = ED, \end{cases}$
∴ △BHE≌△EDF.
∴ BE = EF,∠HBE = ∠DEF.
∵ ∠HBE + ∠BEH = 180° - ∠BHE = 45°,
∴ ∠DEF + ∠BEH = 45°.
∴ ∠FED + ∠BEH + ∠AEH = 90°,即∠FED + ∠AEB = 90°.
∴ ∠BEF = 180° - (∠FED + ∠AEB) = 90°.
∴ △BEF是等腰直角三角形.
∴ ∠BFE = ∠FBE = 45°. $\sin\angle BFE = \sin45° = \frac{\sqrt{2}}{2}$.故结论①正确.过点B作BM⊥BF,交DA的延长线于点M.
∵ ∠MDF + ∠ABC = 90°,
∴ ∠MBA + ∠ABF = ∠ABF + ∠GBC.
∴ ∠MBA = ∠GBC.
∵ ∠BAD = ∠C = 90°,在△BAM和△BCG中,
$\begin{cases} \angle MBA = \angle GBC, \\ AB = CB, \\ \angle BAM = \angle C, \end{cases}$
∴ △BAM≌△BCG.
∴ AM = CG,BM = BG.
∴ AE + CG = AE + AM = ME.
∵ ∠MBF = 90°,∠FBE = 45°,
∴ ∠MBE = 45°.
∴ ∠MBE = ∠FBE.在△MBE和△GBE中,
$\begin{cases} BM = BG, \\ \angle MBE = \angle GBE, \\ BE = BE, \end{cases}$
∴ △MBE≌△GBE.
∴ ME = GE.
∴ AE + CG = EG.故结论②不正确.过点F作FN⊥AD,交AD的延长线于点N.由①可知,AE = a,DF = $\sqrt{2}a$,
∴ ED = AD - AE = 4 - a.
∵ ∠CDN = ∠ADC = 90°,∠CDP = 45°,
∴ ∠FDN = ∠CDN - ∠CDP = 45°.
∴ △NDF是等腰直角三角形.
∴ DN = FN.由勾股定理,得DF = $\sqrt{DN^2 + FN^2} = \sqrt{2}DN$.
∴ DN = FN = $\frac{\sqrt{2}}{2}DF = \frac{\sqrt{2}}{2} × \sqrt{2}a = a$.设△DEF的面积为S,则S = $\frac{1}{2}DE · FN = \frac{1}{2}(4 - a) · a$.整理,得S = $-\frac{1}{2}(a - 2)^2 + 2$.
∴ 当a = 2时,S取得最大值,为2.故结论③正确.设CG = x,则DG = CD - CG = 4 - x.
∵ AE = $\frac{1}{3}AD = \frac{4}{3}$.
∴ DE = AD - AE = $4 - \frac{4}{3} = \frac{8}{3}$.由②可知,AE + CG = EG,
∴ EG = x + $\frac{4}{3}$.在Rt△DEG中,由勾股定理,得$EG^2 = DE^2 + DG^2$,即$(x + \frac{4}{3})^2 = (\frac{8}{3})^2 + (4 - x)^2$,解得x = 2.
∴ CG = 2.
∴ DG = 4 - x = 2.
∴ CG = DG.
∴ G是线段CD的中点.故结论④正确.综上所述,正确的是①③④.
∵ AE∶DF = 1∶$\sqrt{2}$,
∴ 设AE = AH = a,则DF = $\sqrt{2}a$.
∵ 四边形ABCD是正方形,且边长为4,
∴ AB = AD = CB = CD = 4,∠BAD = ∠ADC = ∠C = ∠ABC = 90°.
∴ △AHE是等腰直角三角形.
∴ ∠AEH = ∠AHE = 45°,且由勾股定理,得HE = $\sqrt{AE^2 + AH^2} = \sqrt{2}a$.
∵ HE = DF.
∵ ∠CDP = 45°,
∴ ∠EDF = ∠ADC + ∠CDP = 135°.
∵ ∠BHE = 180° - ∠AHE = 135°,且由勾股定理,得HE = $\sqrt{2}a$,DF = $\sqrt{2}a$,BH = ED.在△BHE和△EDF中,
$\begin{cases} HE = DF, \\ \angle BHE = \angle EDF, \\ BH = ED, \end{cases}$
∴ △BHE≌△EDF.
∴ BE = EF,∠HBE = ∠DEF.
∵ ∠HBE + ∠BEH = 180° - ∠BHE = 45°,
∴ ∠DEF + ∠BEH = 45°.
∴ ∠FED + ∠BEH + ∠AEH = 90°,即∠FED + ∠AEB = 90°.
∴ ∠BEF = 180° - (∠FED + ∠AEB) = 90°.
∴ △BEF是等腰直角三角形.
∴ ∠BFE = ∠FBE = 45°. $\sin\angle BFE = \sin45° = \frac{\sqrt{2}}{2}$.故结论①正确.过点B作BM⊥BF,交DA的延长线于点M.
∵ ∠MDF + ∠ABC = 90°,
∴ ∠MBA + ∠ABF = ∠ABF + ∠GBC.
∴ ∠MBA = ∠GBC.
∵ ∠BAD = ∠C = 90°,在△BAM和△BCG中,
$\begin{cases} \angle MBA = \angle GBC, \\ AB = CB, \\ \angle BAM = \angle C, \end{cases}$
∴ △BAM≌△BCG.
∴ AM = CG,BM = BG.
∴ AE + CG = AE + AM = ME.
∵ ∠MBF = 90°,∠FBE = 45°,
∴ ∠MBE = 45°.
∴ ∠MBE = ∠FBE.在△MBE和△GBE中,
$\begin{cases} BM = BG, \\ \angle MBE = \angle GBE, \\ BE = BE, \end{cases}$
∴ △MBE≌△GBE.
∴ ME = GE.
∴ AE + CG = EG.故结论②不正确.过点F作FN⊥AD,交AD的延长线于点N.由①可知,AE = a,DF = $\sqrt{2}a$,
∴ ED = AD - AE = 4 - a.
∵ ∠CDN = ∠ADC = 90°,∠CDP = 45°,
∴ ∠FDN = ∠CDN - ∠CDP = 45°.
∴ △NDF是等腰直角三角形.
∴ DN = FN.由勾股定理,得DF = $\sqrt{DN^2 + FN^2} = \sqrt{2}DN$.
∴ DN = FN = $\frac{\sqrt{2}}{2}DF = \frac{\sqrt{2}}{2} × \sqrt{2}a = a$.设△DEF的面积为S,则S = $\frac{1}{2}DE · FN = \frac{1}{2}(4 - a) · a$.整理,得S = $-\frac{1}{2}(a - 2)^2 + 2$.
∴ 当a = 2时,S取得最大值,为2.故结论③正确.设CG = x,则DG = CD - CG = 4 - x.
∵ AE = $\frac{1}{3}AD = \frac{4}{3}$.
∴ DE = AD - AE = $4 - \frac{4}{3} = \frac{8}{3}$.由②可知,AE + CG = EG,
∴ EG = x + $\frac{4}{3}$.在Rt△DEG中,由勾股定理,得$EG^2 = DE^2 + DG^2$,即$(x + \frac{4}{3})^2 = (\frac{8}{3})^2 + (4 - x)^2$,解得x = 2.
∴ CG = 2.
∴ DG = 4 - x = 2.
∴ CG = DG.
∴ G是线段CD的中点.故结论④正确.综上所述,正确的是①③④.
24. (2025·长春)如图,▱$ABCD$的对角线$AC$,$BD$相交于点$O$,$AB = 5$,$OA = 4$,$OB = 3$。求证:▱$ABCD$是菱形。

答案:
24.
∵ AB = 5,OA = 4,OB = 3,
∴ $AB^2 = 25 = 9 + 16 = OB^2 + OA^2$.
∴ ∠AOB = 90°.
∴ AC⊥BD.
∴ □ABCD是菱形
∵ AB = 5,OA = 4,OB = 3,
∴ $AB^2 = 25 = 9 + 16 = OB^2 + OA^2$.
∴ ∠AOB = 90°.
∴ AC⊥BD.
∴ □ABCD是菱形
25. (2025·泸州)如图,在菱形$ABCD$中,$E$,$F$分别是边$AB$,$BC$上的点,且$AE = CF$。求证:$AF = CE$。

答案:
25.
∵ 四边形ABCD是菱形,
∴ AB = BC.
∵ AE = CF,
∴ AB - AE = BC - CF,即BE = BF.在△ABF和△CBE中,
$\begin{cases} AB = CB, \\ \angle B = \angle B, \end{cases}$
∴ △ABF≌△CBE.
∴ AF = CE
∵ 四边形ABCD是菱形,
∴ AB = BC.
∵ AE = CF,
∴ AB - AE = BC - CF,即BE = BF.在△ABF和△CBE中,
$\begin{cases} AB = CB, \\ \angle B = \angle B, \end{cases}$
∴ △ABF≌△CBE.
∴ AF = CE
查看更多完整答案,请扫码查看