2026年通城学典全国中考试题分类精粹中考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年通城学典全国中考试题分类精粹中考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年通城学典全国中考试题分类精粹中考数学》

第103页
10. (2025·乐山)如图,在$\triangle ABC$中,$\angle ABC=45^{\circ}$,$\angle ACB=60^{\circ}$,$AC=2$. 求:
(1)$AB$的长;
(2)点$C$到线段$AB$的距离.
答案: 10.
(1) 过点 A 作 AD⊥BC,垂足为 D. 在 Rt△ACD
中,$AD = ACsin 60° = 2×\frac{\sqrt{3}}{2} = \sqrt{3},$$DC = ACcos 60° = 2×\frac{1}{2} = 1. $在 Rt△ABD 中,$AB = \frac{AD}{sin 45°} = \frac{\sqrt{3}}{\frac{\sqrt{2}}{2}} = \sqrt{6} (2) $由
(1),得$ BD = AD = \sqrt{3}. $又
∵ DC = 1,
∴ BC = BD + DC =
$\sqrt{3} + 1. $设点 C 到线段 AB 的距离为 h,则$ S△ABC = \frac{1}{2}AB·$
$h = \frac{1}{2}·BC·AD,$即$\sqrt{6}h = \sqrt{3}(\sqrt{3} + 1),$解得$ h = \frac{\sqrt{6} + \sqrt{2}}{2}$
∴ 点 C 到线段 AB 的距离为$\frac{\sqrt{6} + \sqrt{2}}{2}$
11. (2025·泸州)如图,$AB$,$CD$是$\odot O$的直径,过点$C$的直线与过点$B$的切线交于点$E$,与$BA$的延长线交于点$F$,且$EB=EC$,连接$DE$交$AB$于点$G$.
(1)求证:$EF$是$\odot O$的切线;
(2)若$AF=10$,$\sin F=\frac{1}{3}$,求$EG$的长.
答案: 11.
(1) 连接 OE.
∵ BE 是⊙O 的切线,
∴ OB⊥BE,即
$\begin{cases}OC = OB,\\\angle OBE = 90°.\end{cases} $在 △OEC 和 △OEB 中,$\begin{cases}OE = OE,\\CE = BE,\end{cases}$
∴ △OEC≌△OEB.
∴ ∠OCE = ∠OBE = 90°.
∴ OC⊥
CE.
∵ OC 是⊙O 的半径,
∴ EF 是⊙O 的切线
(2) 过
点 C 作 CH⊥BF 于点 H,过点 D 作 DM⊥BF 于点 M. 设 OA = OC = r,则 OF = OA + AF = r + 10. 由
(1),得∠OCF =
90°,在 Rt△OCF 中,$sin F = \frac{OC}{OF} = \frac{1}{3},$
∴ 3OC = OF.
∴ 3r =
r + 10.
∴ r = 5.
∴ OA = OC = 5.
∴ AB = CD = 2OA = 10,
OF = 15.
∴ BF = OF + OB = 20. 在 Rt△OCF 中,由勾股定
理,得$ CF = \sqrt{OF^{2} - OC^{2}} = \sqrt{15^{2} - 5^{2}} = 10\sqrt{2},$
∴ cos F =
$\frac{CF}{OF} = \frac{10\sqrt{2}}{15} = \frac{2\sqrt{2}}{3}. $在 Rt△BEF 中,$EF = \frac{BF}{cos F} = \frac{20}{\frac{2\sqrt{2}}{3}} =$
$15\sqrt{2}. $
∴$ CE = BE = EF - CF = 15\sqrt{2} - 10\sqrt{2} = 5\sqrt{2}. $在
Rt△CDE 中,由勾股定理,得$ DE = \sqrt{CE^{2} + CD^{2}} =$
$\sqrt{(5\sqrt{2})^{2} + 10^{2}} = 5\sqrt{6}. $
∵$ S△OCF = \frac{1}{2}OF·CH = \frac{1}{2}OC·$
CF,
∴$ CH = \frac{OC·CF}{OF} = \frac{5×10\sqrt{2}}{15} = \frac{10\sqrt{2}}{3} $
∵ ∠DMO =
∠CHO = 90°,∠DOM = ∠COH,OD = OC,
∴ △DOM≌
△COH.
∴$ DM = CH = \frac{10\sqrt{2}}{3} $
∵ ∠EBG = ∠DMG = 90°,
∠EGB = ∠DGM,
∴ △EGB∽△DGM.
∴$ \frac{EG}{DG} = \frac{BE}{MD},$即
$\frac{EG}{DG} = \frac{5\sqrt{2}}{10\sqrt{2}} = \frac{3}{2}. $
∴$ EG = \frac{3}{2 + 3}DE = 3\sqrt{6}$
12. (2025·新疆)如图,$AB$为$\odot O$的直径,$C$为$\odot O$上一点,$CF\perp AB$于点$F$,$\angle FCE=2\angle A$,$BD// CE$交$CF$于点$G$,交$AC$于点$D$.
(1)求证:$CE$是$\odot O$的切线;
(2)若$\tan \angle BCE=\frac{1}{2}$,$BE=1$,求$DG$的长.
答案: 12.
(1)
∵ CF⊥AB 于点 F,
∴ ∠CFO = 90°.
∵ OC = OA,
∴ ∠COF = 2∠A.
∴ ∠FCE = 2∠A,
∴ ∠COF = ∠FCE.
∵ ∠COF + ∠OCF = 90°,
∴ ∠FCE + ∠OCF = 90°,即
∠OCE = 90°. 又
∵ OC 为⊙O 的半径,
∴ CE 是⊙O 的切线
(2)
∵ AB 为⊙O 的直径,
∴ ∠ACB = 90°. 过点 D 作 DH⊥
AB 于点 H.
∵ ∠ACB = ∠OCE,
∴ ∠ACO = ∠BCE.
∵ BD//CE,
∴ ∠BCE =
∠DBC.
∴$ tan ∠BCE = tan A = tan ∠DBC = \frac{1}{2}. $
∴ 设
CD = a,则 BC = 2a,AC = 4a.
∴ AD = AC - CD = 3a. 在
Rt△ACB 中,由勾股定理,可得$ AB = \sqrt{BC^{2} + AC^{2}} =$
$\sqrt{4a^{2} + 16a^{2}} = 2\sqrt{5}a. $
∵ BD//CE,
∴$ \frac{AD}{CD} = \frac{AB}{BE},$即$\frac{3a}{a} =$
$\frac{2\sqrt{5}a}{1},$解得$ a = \frac{3\sqrt{5}}{10}. $
∴ AB = 3,$AD = \frac{9\sqrt{5}}{10},$$BC = \frac{3\sqrt{5}}{5}.$
∵$ S△ABC = \frac{1}{2}AC·BC = \frac{1}{2}AB·CF,$
∴$ CF = \frac{AC·BC}{AB} =$
$\frac{4a·2a}{2\sqrt{5}a} = \frac{4\sqrt{5}a}{5} = \frac{6}{5}. $
∴$ BF = \sqrt{BC^{2} - CF^{2}} =$
$\sqrt{(\frac{3\sqrt{5}}{5})^{2} - (\frac{6}{5})^{2}} = \frac{3}{5} $
∵$ tan A = \frac{1}{2},$
∴$ cos A = \frac{2\sqrt{5}}{5}$
在 Rt△AHD 中,$AH = ADcos A = \frac{9\sqrt{5}}{10}×\frac{2\sqrt{5}}{5} = \frac{9}{5}.$
∴$ BH = AB - AH = 3 - \frac{9}{5} = \frac{6}{5}. $
∵$ BF = \frac{1}{2}BH,$CF//
DH,
∴$ DG = \frac{1}{2}DB. $又
∵$ DB = \sqrt{CD^{2} + BC^{2}} =$
$\sqrt{a^{2} + (2a)^{2}} = \sqrt{5}a = \frac{3}{2},$
∴$ DG = \frac{3}{4}$

查看更多完整答案,请扫码查看

关闭