2026年通城学典全国中考试题分类精粹中考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年通城学典全国中考试题分类精粹中考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年通城学典全国中考试题分类精粹中考数学》

第110页
20. (2025·陕西)小涵和小宇想测量公园山坡上一个信号杆的高度。在征得家长同意后,他们带着工具前往测量。测量示意图如图所示,他们在坡面$FB$上的点$D$处安装测角仪$DE$,测得信号杆顶端$A$的仰角$\alpha$为$45^{\circ}$,$DE$与坡面的夹角$\beta$为$72.5^{\circ}$,又测得点$D$与信号杆底端$B$之间的距离$DB$为$22m$。已知$DE = 1.7m$,点$A$,$B$,$C$在同一条直线上,$AB$,$DE$均与水平线$FC$垂直。求信号杆的高$AB$(参考数据:$\sin72.5^{\circ}\approx0.95$,$\cos72.5^{\circ}\approx0.30$,$\tan72.5^{\circ}\approx3.17$)。
答案:
20. 如图,过点E作$EI \perp AC$于点I,过点D作$DH \perp AC$于点H。$\because AB$,$DE$均与水平线$FC$垂直,$\therefore DE // AC$。
$\therefore \angle DBH = \angle BDE = 72.5^{\circ}$。$\because DH \perp AC$,$\therefore \angle DHI = 90^{\circ}$。在$Rt \triangle DBH$中,$BD = 22 m$,$\sin 72.5^{\circ} = \frac{DH}{BD}$,则$DH = BD\sin 72.5^{\circ} \approx 22 × 0.95 = 20.9(m)$。在$Rt \triangle DBH$中,$BD = 22 m$,$\cos 72.5^{\circ} = \frac{BH}{BD}$,则$BH = BD\cos 72.5^{\circ} \approx 22 × 0.30 = 6.6(m)$。由题意,得$\angle EDH = \angle DHI = \angle HIE = 90^{\circ}$。$\therefore$四边形EDHI是矩形。$\therefore EI = DH = 20.9 m$。$\because \angle AIE = 45^{\circ}$,
$\angle AIE = 90^{\circ}$,$\therefore \angle EAI = 45^{\circ}$。$\therefore AI = EI = 20.9 m$。
$\therefore AB = AI + IH - BH = 20.9 + 1.7 - 6.6 = 16(m)$。$\therefore$信号杆的高AB约为$16 m$
第20题
21. (2025·长沙)如图,某景区内两条互相垂直的道路$a$,$b$交于点$M$,景点$A$,$B$在道路$a$上,景点$C$在道路$b$上。为了进一步提升景区品质,景区管委会在道路$b$上又开发了风景优美的景点$D$。经测得景点$C$位于景点$B$的北偏东$60^{\circ}$方向上,位于景点$A$的北偏东$30^{\circ}$方向上,景点$B$位于景点$D$的南偏西$45^{\circ}$方向上。已知$AB = 800m$。求:
(1)$\angle ACB$的度数;
(2)景点$C$与景点$D$之间的距离(结果保留根号)。
答案:
21.
(1)如图,根据题意,得$\angle CBE = 60^{\circ}$,$\angle CAF = 30^{\circ}$,
$\angle BDM = 45^{\circ}$,$BM // AF // DM$。$\therefore \angle BCM = \angle CBE = 60^{\circ}$,$\angle ACM = \angle CAF = 30^{\circ}$。$\therefore \angle ACB = \angle BCM - \angle ACM = 60^{\circ} - 30^{\circ} = 30^{\circ}$
(2) $\because \angle CBE = 60^{\circ}$,
$\therefore \angle CBM = 90^{\circ} - \angle CBE = 90^{\circ} - 60^{\circ} = 30^{\circ}$。由
(1),得
$\angle ACB = 30^{\circ}$。$\therefore \angle ABC = \angle ACB = 30^{\circ}$。又$\because AB = 800 m$,
$\therefore AC = AB = 800 m$。在$Rt \triangle ACM$中,$\sin \angle ACM = \frac{AM}{AC}$,
$\cos \angle ACM = \frac{CM}{AC}$,$\therefore AM = AC · \sin \angle ACM = 800 × \sin 30^{\circ} = 800 × \frac{1}{2} = 400(m)$,$CM = AC · \cos \angle ACM = 800 × \cos 30^{\circ} = 800 × \frac{\sqrt{3}}{2} = 400\sqrt{3}(m)$。$\therefore BM = AB + AM = 800 + 400 = 1200(m)$。$\because \angle BDM = 45^{\circ}$,$BM \perp DM$,
$\therefore \angle BDM = \angle DBM = 45^{\circ}$。$\therefore DM = BM = 1200 m$。$\therefore DC = DM - CM = (1200 - 400\sqrt{3}) m$。$\therefore$景点C与景点D之间的距离为$(1200 - 400\sqrt{3}) m$
F30aB第21题

查看更多完整答案,请扫码查看

关闭