第98页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
18. (2025·绥化)如图,$\angle APO=\angle BPO$,$PA$与$\odot O$相切于点$M$,连接$OM$,$OP$与$\odot O$相交于点$C$,过点$C$作$CD\perp OM$,垂足为$E$,交$\odot O$于点$D$,连接$PD$交$OM$于点$F$。
(1) 求证:$PB$是$\odot O$的切线;
(2) 当$PC = 6$,$PM=\frac{5}{4}CD$时,求线段$MF$的长。

(1) 求证:$PB$是$\odot O$的切线;
(2) 当$PC = 6$,$PM=\frac{5}{4}CD$时,求线段$MF$的长。
答案:
18.
(1)过点$O$作$ON\perp PB$于点$N$。$\because ON\perp PB$,$\therefore\angle PNO = 90^{\circ}$。$\because PA$与$\odot O$相切于点$M$,$\therefore OM\perp PA$。$\therefore\angle PMO = \angle PNO = 90^{\circ}$。$\because\angle APO = \angle BPO$,$PO = PO$,$\therefore\triangle PMO\cong\triangle PNO$。$\therefore OM = ON$。$\because OM$为$\odot O$的半径,$\therefore ON$为$\odot O$的半径。$\because ON\perp PB$,$\therefore PB$是$\odot O$的切线。
(2)$\because CD\perp OM$,$OM$为半径,$\therefore CE = DE=\frac{1}{2}CD$。$\because PM=\frac{5}{4}CD$,
$\therefore\frac{CD}{PM}=\frac{4}{5}$。$\therefore\frac{CE}{PM}=\frac{2}{5}$。$\because\angle OMP = 90^{\circ}$,$\angle OEC = 90^{\circ}$,
$\therefore CD// PM$。$\therefore\triangle OMP\sim\triangle OEC$。$\therefore\frac{CE}{PM}=\frac{OC}{OP}$。$\because PC = 6$,
$\therefore\frac{2}{5}=\frac{OC}{OC + 6}$。$\therefore OC = 4$。$\therefore OC = OM = 4$。在$Rt\triangle MOP$中,$PM=\sqrt{OP^{2}-OM^{2}}=\sqrt{(6 + 4)^{2}-4^{2}}=2\sqrt{21}$,$\therefore CE = DE=\frac{4\sqrt{21}}{5}$,$OE=\sqrt{OC^{2}-CE^{2}}=\sqrt{4^{2}-(\frac{4\sqrt{21}}{5})^{2}}=\frac{8}{5}$。
$\because\angle FMP=\angle FED$,$\angle MFP=\angle EFD$,$\therefore\triangle MFP\sim\triangle EFD$。$\therefore\frac{MF}{EF}=\frac{MP}{ED}$。设$MF = x$,则$EF = 4 - x-\frac{8}{5}=\frac{12}{5}-x$,$\therefore\frac{x}{\frac{12}{5}-x}=\frac{2\sqrt{21}}{\frac{4\sqrt{21}}{5}}$,解得$x=\frac{12}{7}$。$\therefore MF=\frac{12}{7}$。
(1)过点$O$作$ON\perp PB$于点$N$。$\because ON\perp PB$,$\therefore\angle PNO = 90^{\circ}$。$\because PA$与$\odot O$相切于点$M$,$\therefore OM\perp PA$。$\therefore\angle PMO = \angle PNO = 90^{\circ}$。$\because\angle APO = \angle BPO$,$PO = PO$,$\therefore\triangle PMO\cong\triangle PNO$。$\therefore OM = ON$。$\because OM$为$\odot O$的半径,$\therefore ON$为$\odot O$的半径。$\because ON\perp PB$,$\therefore PB$是$\odot O$的切线。
(2)$\because CD\perp OM$,$OM$为半径,$\therefore CE = DE=\frac{1}{2}CD$。$\because PM=\frac{5}{4}CD$,
$\therefore\frac{CD}{PM}=\frac{4}{5}$。$\therefore\frac{CE}{PM}=\frac{2}{5}$。$\because\angle OMP = 90^{\circ}$,$\angle OEC = 90^{\circ}$,
$\therefore CD// PM$。$\therefore\triangle OMP\sim\triangle OEC$。$\therefore\frac{CE}{PM}=\frac{OC}{OP}$。$\because PC = 6$,
$\therefore\frac{2}{5}=\frac{OC}{OC + 6}$。$\therefore OC = 4$。$\therefore OC = OM = 4$。在$Rt\triangle MOP$中,$PM=\sqrt{OP^{2}-OM^{2}}=\sqrt{(6 + 4)^{2}-4^{2}}=2\sqrt{21}$,$\therefore CE = DE=\frac{4\sqrt{21}}{5}$,$OE=\sqrt{OC^{2}-CE^{2}}=\sqrt{4^{2}-(\frac{4\sqrt{21}}{5})^{2}}=\frac{8}{5}$。
$\because\angle FMP=\angle FED$,$\angle MFP=\angle EFD$,$\therefore\triangle MFP\sim\triangle EFD$。$\therefore\frac{MF}{EF}=\frac{MP}{ED}$。设$MF = x$,则$EF = 4 - x-\frac{8}{5}=\frac{12}{5}-x$,$\therefore\frac{x}{\frac{12}{5}-x}=\frac{2\sqrt{21}}{\frac{4\sqrt{21}}{5}}$,解得$x=\frac{12}{7}$。$\therefore MF=\frac{12}{7}$。
19. (2025·上海)已知四边形$ABCD$是平行四边形,$E$,$F$分别是边$BC$,$CD$上的点。
(1) 若$E$是边$BC$的中点:
① 如图①,若$AE = EF$,求证:$\angle BAE=\angle EFC$;
② 如图②,若$CF = DF$,连接$BF$交$AE$于点$G$,求$S_{\triangle BEG}:S_{\triangle AEF}$的值。
(2) 如图③,若$AB = 3$,$AD = 5$,$CF = 1$,$\angle AEB=\angle AFE=\angle EFC$,求$AF$的长。

(1) 若$E$是边$BC$的中点:
① 如图①,若$AE = EF$,求证:$\angle BAE=\angle EFC$;
② 如图②,若$CF = DF$,连接$BF$交$AE$于点$G$,求$S_{\triangle BEG}:S_{\triangle AEF}$的值。
(2) 如图③,若$AB = 3$,$AD = 5$,$CF = 1$,$\angle AEB=\angle AFE=\angle EFC$,求$AF$的长。
答案:
19.
(1)①延长$FE$,$AB$交于点$H$。$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$。$\therefore\angle EBH = \angle ECF$,$\angle H = \angle EFC$。$\because E$是边$BC$的中点,$\therefore BE = CE$。$\therefore\triangle BEH\cong\triangle CEF$。$\therefore EH = EF$。$\because AE = EF$,$\therefore AE = EH$。$\therefore\angle H = \angle BAE$。$\therefore\angle BAE = \angle CFE$。②延长$BF$,$AD$交于点$M$。$\because$四边形$ABCD$是平行四边形,$\therefore AD// BC$,$AD = BC$。
$\therefore\triangle BEG\sim\triangle MAG$,$\triangle BCF\sim\triangle MDF$。$\therefore\frac{BE}{MA}=\frac{GE}{GA}=\frac{BG}{MG}$,$\frac{BC}{MD}=\frac{BF}{MF}=\frac{CF}{DF}=1$。$\therefore BF = MF$,$BC = DM$。$\because E$是边$BC$的中点,$\therefore BC = 2CE = 2BE$。设$CE = BE = m$,则$BC = DM = 2m$,$\therefore AM = AD + DM = 4m$。$\therefore\frac{BE}{AM}=\frac{m}{4m}=\frac{1}{4}$。$\because\frac{BF}{MF}=1$,$\therefore\frac{BG}{GF}=\frac{2}{3}$。$\therefore\frac{S_{\triangle BGE}}{S_{\triangle BGA}}=\frac{S_{\triangle GFE}}{S_{\triangle GFA}}=\frac{GE}{AG}=\frac{1}{4}$,$\frac{S_{\triangle ABG}}{S_{\triangle AFG}}=\frac{BG}{FG}=\frac{2}{3}$。设$S_{\triangle ABG}=4n$,则$S_{\triangle BGE}=n$,$S_{\triangle AFG}=6n$,$\therefore S_{\triangle EGF}=\frac{3}{2}n$。$\therefore\frac{S_{\triangle BGE}}{S_{\triangle AEF}}=\frac{S_{\triangle BGE}}{S_{\triangle AFG}+S_{\triangle EGF}}=\frac{n}{6n+\frac{3}{2}n}=\frac{2}{15}$。
(2)延长$AD$,$EF$交于点$M$。四边形$ABCD$是平行四边形,$\therefore AD// BC$,$CD = AB = 3$。$\therefore\angle AEB = \angle EAD$。$\because\angle AEB = \angle AFE = \angle EFC$,$\therefore\angle EFA = \angle EAD$。又$\because\angle AEF = \angle MEA$,
$\therefore\triangle AEF\sim\triangle MEA$。$\because\angle AEB + \angle AEF + \angle FEC = \angle EFC + \angle FCE + \angle FEC = 180^{\circ}$,$\angle AEB = \angle EFC$,$\therefore\angle AEF = \angle FCE$。$\therefore\triangle AEF\sim\triangle ECF$。$\because AD// BC$,
$\therefore\triangle ECF\sim\triangle MDF$。$\therefore\frac{EC}{MD}=\frac{EF}{MF}=\frac{CF}{DF}$。$\because CF = 1$,
$\therefore DF = CD - CF = 2$。设$CE = s$,$FE = t$。$\because\triangle AEF\sim\triangle ECF$,$\therefore\frac{CF}{EF}=\frac{CE}{EA}=\frac{EF}{AF}$,即$\frac{1}{t}=\frac{s}{AE}=\frac{t}{AF}$。$\therefore AE = st$,$AF = t^{2}$。$\because\frac{EC}{DM}=\frac{EF}{FM}=\frac{CF}{DF}$,即$\frac{s}{DM}=\frac{t}{FM}=\frac{1}{2}$,$\therefore DM = 2s$,$FM = 2t$。$\therefore AM = AD + DM = 5 + 2s$。$\because\triangle AEF\sim\triangle MEA$,$\therefore\frac{EF}{EA}=\frac{AE}{MA}=\frac{AF}{MA}$,即$\frac{t}{st}=\frac{st}{t + 2t}=\frac{t^{2}}{5 + 2s}$。
$\therefore\begin{cases}s=\sqrt{3}\\t^{2}=\frac{5\sqrt{3}+6}{3}\end{cases}$或$\begin{cases}s=-\sqrt{3}\\t^{2}=\frac{6 - 5\sqrt{3}}{3}\end{cases}$(舍去)。$\therefore AF=\frac{5\sqrt{3}+6}{3}$。
(1)①延长$FE$,$AB$交于点$H$。$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$。$\therefore\angle EBH = \angle ECF$,$\angle H = \angle EFC$。$\because E$是边$BC$的中点,$\therefore BE = CE$。$\therefore\triangle BEH\cong\triangle CEF$。$\therefore EH = EF$。$\because AE = EF$,$\therefore AE = EH$。$\therefore\angle H = \angle BAE$。$\therefore\angle BAE = \angle CFE$。②延长$BF$,$AD$交于点$M$。$\because$四边形$ABCD$是平行四边形,$\therefore AD// BC$,$AD = BC$。
$\therefore\triangle BEG\sim\triangle MAG$,$\triangle BCF\sim\triangle MDF$。$\therefore\frac{BE}{MA}=\frac{GE}{GA}=\frac{BG}{MG}$,$\frac{BC}{MD}=\frac{BF}{MF}=\frac{CF}{DF}=1$。$\therefore BF = MF$,$BC = DM$。$\because E$是边$BC$的中点,$\therefore BC = 2CE = 2BE$。设$CE = BE = m$,则$BC = DM = 2m$,$\therefore AM = AD + DM = 4m$。$\therefore\frac{BE}{AM}=\frac{m}{4m}=\frac{1}{4}$。$\because\frac{BF}{MF}=1$,$\therefore\frac{BG}{GF}=\frac{2}{3}$。$\therefore\frac{S_{\triangle BGE}}{S_{\triangle BGA}}=\frac{S_{\triangle GFE}}{S_{\triangle GFA}}=\frac{GE}{AG}=\frac{1}{4}$,$\frac{S_{\triangle ABG}}{S_{\triangle AFG}}=\frac{BG}{FG}=\frac{2}{3}$。设$S_{\triangle ABG}=4n$,则$S_{\triangle BGE}=n$,$S_{\triangle AFG}=6n$,$\therefore S_{\triangle EGF}=\frac{3}{2}n$。$\therefore\frac{S_{\triangle BGE}}{S_{\triangle AEF}}=\frac{S_{\triangle BGE}}{S_{\triangle AFG}+S_{\triangle EGF}}=\frac{n}{6n+\frac{3}{2}n}=\frac{2}{15}$。
(2)延长$AD$,$EF$交于点$M$。四边形$ABCD$是平行四边形,$\therefore AD// BC$,$CD = AB = 3$。$\therefore\angle AEB = \angle EAD$。$\because\angle AEB = \angle AFE = \angle EFC$,$\therefore\angle EFA = \angle EAD$。又$\because\angle AEF = \angle MEA$,
$\therefore\triangle AEF\sim\triangle MEA$。$\because\angle AEB + \angle AEF + \angle FEC = \angle EFC + \angle FCE + \angle FEC = 180^{\circ}$,$\angle AEB = \angle EFC$,$\therefore\angle AEF = \angle FCE$。$\therefore\triangle AEF\sim\triangle ECF$。$\because AD// BC$,
$\therefore\triangle ECF\sim\triangle MDF$。$\therefore\frac{EC}{MD}=\frac{EF}{MF}=\frac{CF}{DF}$。$\because CF = 1$,
$\therefore DF = CD - CF = 2$。设$CE = s$,$FE = t$。$\because\triangle AEF\sim\triangle ECF$,$\therefore\frac{CF}{EF}=\frac{CE}{EA}=\frac{EF}{AF}$,即$\frac{1}{t}=\frac{s}{AE}=\frac{t}{AF}$。$\therefore AE = st$,$AF = t^{2}$。$\because\frac{EC}{DM}=\frac{EF}{FM}=\frac{CF}{DF}$,即$\frac{s}{DM}=\frac{t}{FM}=\frac{1}{2}$,$\therefore DM = 2s$,$FM = 2t$。$\therefore AM = AD + DM = 5 + 2s$。$\because\triangle AEF\sim\triangle MEA$,$\therefore\frac{EF}{EA}=\frac{AE}{MA}=\frac{AF}{MA}$,即$\frac{t}{st}=\frac{st}{t + 2t}=\frac{t^{2}}{5 + 2s}$。
$\therefore\begin{cases}s=\sqrt{3}\\t^{2}=\frac{5\sqrt{3}+6}{3}\end{cases}$或$\begin{cases}s=-\sqrt{3}\\t^{2}=\frac{6 - 5\sqrt{3}}{3}\end{cases}$(舍去)。$\therefore AF=\frac{5\sqrt{3}+6}{3}$。
查看更多完整答案,请扫码查看