2026年通城学典全国中考试题分类精粹中考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年通城学典全国中考试题分类精粹中考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年通城学典全国中考试题分类精粹中考数学》

第171页
15. (2025·天津)在平面直角坐标系中,O为原点,等边三角形ABC的顶点A,B的坐标分别为$(0,2)$,$(0,-1)$,点C在第一象限,等边三角形EOF的顶点E的坐标为$(-\sqrt{3},0)$,顶点F在第二象限。
(1) 填空:如图①,点F的坐标为
$\left( -\frac{\sqrt{3}}{2},\frac{3}{2} \right)$
,点C的坐标为
$\left( \frac{3\sqrt{3}}{2},\frac{1}{2} \right)$

(2) 将等边三角形EOF沿水平方向向右平移,得到等边三角形$E'O'F'$,点E,O,F的对应点分别为$E'$,$O'$,$F'$。设$OO' = t$。
① 如图②,若边$E'F'$与边AB相交于点G,当$\triangle E'O'F'$与$\triangle ABC$重叠部分为四边形$OO'F'G$时,试用含有t的式子表示线段GA的长,并直接写出t的取值范围;
② 设平移后重叠部分的面积为S,当$\frac{3\sqrt{3}}{4} \leq t \leq \frac{3\sqrt{3}}{2}$时,求S的取值范围。
答案:

(1) $\left( -\frac{\sqrt{3}}{2},\frac{3}{2} \right)$ $\left( \frac{3\sqrt{3}}{2},\frac{1}{2} \right)$
(2) ① 由题意,知$\angle F'E'O' = \angle OEF = 60°$,$O'E' = OE = \sqrt{3}$。$\because OO' = t$,$\therefore OE' = O'E' - OO' = \sqrt{3} - t$。$\therefore OG = \tan 60° · OE' = \sqrt{3}(\sqrt{3} - t) = 3 - \sqrt{3}t$。$\therefore AG = OA - OG = 2 - 3 + \sqrt{3}t = \sqrt{3}t - 1$。当点$F'$落在$y$轴上时,$O$为$O'E'$的中点,$\therefore t = \frac{\sqrt{3}}{2}$。当点$E'$与点$O$重合时,$t = \sqrt{3}$。当$\triangle E'O'F'$与$\triangle ABC$重叠部分为四边形$OO'F'G$时,$\frac{\sqrt{3}}{2} < t < \sqrt{3}$ ② 当$\frac{3\sqrt{3}}{4} \leq t < \sqrt{3}$时,重叠的部分为四边形$OO'F'G$。如图①,过点$F'$作$F'M \perp x$轴于点$M$。由
(1)和
(2)①,可知$F'M = \frac{3}{2}$,$OG = 3 - \sqrt{3}t$,$OE' = \sqrt{3} - t$,$\therefore S = S_{\triangle O'E'F'} - S_{\triangle OE'G} = \frac{1}{2} × \sqrt{3} × \frac{3}{2} - \frac{1}{2}(\sqrt{3} - t)(3 - \sqrt{3}t) = -\frac{\sqrt{3}}{2}(t - \sqrt{3})^2 + \frac{3\sqrt{3}}{4}$。$\because - \frac{\sqrt{3}}{2} < 0$,$\therefore$当$t = \frac{3\sqrt{3}}{4}$时,$S$取得最小值,为$-\frac{\sqrt{3}}{2} × \left( \frac{3\sqrt{3}}{4} - \sqrt{3} \right)^2 + \frac{3\sqrt{3}}{4} = \frac{21\sqrt{3}}{32}$。易知$\frac{21\sqrt{3}}{32} \leq S < \frac{3\sqrt{3}}{4}$。记$BC$与$x$轴的交点为$N$,当$t = \sqrt{3}$时,易知此时点$E'$与点$O$重合,点$O'$与点$N$重合,重叠的部分恰为$\triangle O'E'F'$,如图②。$\therefore S = \frac{1}{2} × \sqrt{3} × \frac{3}{2} = \frac{3\sqrt{3}}{4}$。当$\sqrt{3} < t \leq \frac{3\sqrt{3}}{2}$时,显然$S$随着$t$的增大而减小,$\therefore$当$t = \frac{3\sqrt{3}}{2}$时,$S$有最小值。如图③,连接$CO'$,记$BC$交$x$轴于点$N$,交$F''O'$于点$Q$,$AC$与$F''O'$交于点$P$,与$E'F''$交于点$K$,其中$F''$为图②中点$F'$平移后的对应点,连接$F'F''$。此时易知$CO' \perp x$轴,重叠部分为五边形$E'KPQN$。$\because ON = OB · \tan 60° = \sqrt{3}$,$\therefore$易知$O'N = \frac{3\sqrt{3}}{2} - \sqrt{3} = \frac{\sqrt{3}}{2}$。$\because \angle CNO' = \angle BNO = 90° - \angle ABC = 30°$,$\angle E'O'F'' = 60°$,$\therefore \angle NQO' = 90°$。$O'Q = \frac{1}{2}O'N = \frac{\sqrt{3}}{4}$,$QN = \sqrt{3}O'Q = \frac{3}{4}$。$\therefore S_{\triangle ONQ} = \frac{1}{2} × \frac{\sqrt{3}}{4} × \frac{3}{4} = \frac{3\sqrt{3}}{32}$。$\because \angle ACB = 60°$,$\angle CQP = \angle NQO' = 90°$,$\therefore \angle F''PK = \angle CPQ = 180° - 30° - 60° = 90°$。由平移,可得$F'F'' = NO' = \frac{\sqrt{3}}{2}$,$F'F'' // NO'$,$\therefore \angle F''F'K = \angle O'E'F'' = 60°$。$\therefore \angle F''F'K = 30° = \angle F''PK$。$\therefore F''P = F'F'' = \frac{\sqrt{3}}{2}$。$\therefore$易得$F''K = \frac{\sqrt{3}}{4}$,$PK = \frac{3}{4}$。$\therefore S_{\triangle FKP} = \frac{1}{2} × \frac{\sqrt{3}}{4} × \frac{3}{4} = \frac{3\sqrt{3}}{32}$。$\therefore S = S_{\triangle O'E'F''} - S_{\triangle ONQ} - S_{\triangle FKP} = \frac{3\sqrt{3}}{4} - \frac{3\sqrt{3}}{32} - \frac{3\sqrt{3}}{32} = \frac{9\sqrt{3}}{16}$。$\therefore$当$\sqrt{3} < t \leq \frac{3\sqrt{3}}{2}$时,$\frac{9\sqrt{3}}{16} \leq S < \frac{3\sqrt{3}}{4}$。综上所述,$S$的取值范围是$\frac{9\sqrt{3}}{16} \leq S \leq \frac{3\sqrt{3}}{4}$。
EOMO
OKEW
第15题
16. (2025·甘肃)已知四边形ABCD是正方形,E是边AD上一动点(点D除外),$\triangle EFG$是直角三角形,$EG = EF$,点G在CD的延长线上。
(1) 如图①,当点E与点A重合,且点F在边BC上时,写出BF和DG之间的数量关系,并说明理由;
(2) 如图②,当点E与点A不重合,且点F在正方形ABCD内部时,FE的延长线与BA的延长线交于点P,如果$EF = EP$,写出AE和DG之间的数量关系,并说明理由;
(3) 如图③,在(2)的条件下,连接BF,写出BF和DG之间的数量关系,并说明理由。
答案:
(1) $BF = DG$ 理由:$\because$四边形$ABCD$是正方形,$\therefore AB = AD$,$\angle BAD = 90°$。$\because \triangle EFG$是直角三角形,$EG = EF$,$\therefore \angle FEG = 90°$。当点$E$与点$A$重合时,则$\angle FAG = 90° = \angle BAD$。$\therefore \angle DAG = \angle BAF = 90° - \angle DAF$。又$\because AD = AD$,$AF = AG$,$\therefore \triangle ABF \cong \triangle ADG$。$\therefore BF = DG$。
(2) $AE = DG$ 理由:$\because$四边形$ABCD$是正方形,$\therefore \angle ADC = \angle DAB = 90°$。$\because$点$G$在$CD$的延长线上,$FE$的延长线与$BA$的延长线交于点$P$,$\therefore \angle PAE = \angle EDG = 90°$。$\because \angle P + \angle AEP = 90°$。$\because \angle FEG = \angle DEF + \angle DEG = 90°$,$\angle AEP = \angle DEF$,$\therefore \angle P = \angle DEG$。$\because EG = EF$,$EP = EP$,$\therefore$在$\triangle PAE$和$\triangle EDG$中,$\begin{cases} \angle P = \angle DEG \\ EP = EG \end{cases}$,$\therefore \triangle PAE \cong \triangle EDG$。$\therefore AE = DG$。
(3) $BF = \sqrt{5}DG$ 理由:由
(2),可知$\triangle PAE \cong \triangle EDG$,$\therefore AE = DG$,$AP = DE$。过点$F$作$FH \perp AB$于点$H$,则$\angle FHB = \angle FHA = 90° = \angle PAE$,$\therefore AE // FH$。$\therefore \frac{PA}{AH} = \frac{PE}{EF} = 1$。$\therefore PA = AH$。$\because PE = EF$,$\therefore AE$为$\triangle PHF$的中位线。$\therefore HF = 2AE$。$\because AP = DE$,$PA = AH$,$\therefore DE = AH$。又$\because AD = AB$,$\therefore$易得$AE = BH$。在$Rt \triangle BHF$中,由勾股定理,得$BF = \sqrt{HF^2 + BH^2} = \sqrt{5}AE$。$\because AE = DG$,$\therefore BF = \sqrt{5}DG$。

查看更多完整答案,请扫码查看

关闭