第100页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
22. (2025·长沙)如图①,点$O$是以$AB$为直径的半圆的圆心,$AD$与$BC$均为该半圆的切线,$C$,$D$均为直径$AB$上方的动点,连接$CD$,且始终满足$CD = AD + BC$。
(1) 求证:$CD$与该半圆相切。
(2) 当半径$r = \sqrt{2}$时,令$AD = a$,$BC = b$,$m=\frac{2}{2 + a}+\frac{2}{2 + b}$,$n=\frac{a}{1 + a}+\frac{b}{1 + b}$,比较$m$与$n$的大小,并说明理由。
(3) 在(1)的条件下,如图②,当半径$r = 1$时,若$E$为$CD$与该半圆的切点,$AC$与$BD$交于点$G$,连接$EG$并延长,交$AB$于点$F$,连接$AE$,$BE$。令$EG = x$,$\frac{4}{AE· BE}+\frac{1}{FG}+CD = y$,求$y$关于$x$的函数解析式(不考虑自变量$x$的取值范围)。

(1) 求证:$CD$与该半圆相切。
(2) 当半径$r = \sqrt{2}$时,令$AD = a$,$BC = b$,$m=\frac{2}{2 + a}+\frac{2}{2 + b}$,$n=\frac{a}{1 + a}+\frac{b}{1 + b}$,比较$m$与$n$的大小,并说明理由。
(3) 在(1)的条件下,如图②,当半径$r = 1$时,若$E$为$CD$与该半圆的切点,$AC$与$BD$交于点$G$,连接$EG$并延长,交$AB$于点$F$,连接$AE$,$BE$。令$EG = x$,$\frac{4}{AE· BE}+\frac{1}{FG}+CD = y$,求$y$关于$x$的函数解析式(不考虑自变量$x$的取值范围)。
答案:
22.
(1)如图①,连接$CO$并延长,交$DA$的延长线于点$M$,过点$O$作$OE\perp CD$于点$E$。$\because AD$与$BC$均为该半圆的切线,$\therefore AD\perp AB$,$BC\perp AB$。$\therefore AD// BC$。$\therefore\angle M = \angle OCB$。$\because O$为$AB$的中点,$\therefore OA = OB$。在$\triangle OAM$和$\triangle OBC$中,$\begin{cases}\angle M = \angle OCB\\\angle OAM = \angle OBC = 90^{\circ}\\OA = OB\end{cases}$,$\therefore\triangle OAM\cong\triangle OBC$。$\therefore AM = BC$。
$\because CD = AD + BC$,$\therefore CD = AD + AM = DM$。$\therefore\angle M = \angle OCE$。$\therefore\angle OCB = \angle OCE$,即$CO$平分$\angle BCD$。又$\because OE\perp CD$,$OB\perp CB$,$\therefore OE = OB$。$\therefore CD$与该半圆相切。
(2)$m = n$ 理由:如图②,过点$C$作$CM\perp AD$于点$M$。易得四边形$AMCB$是矩形,$\therefore AB = MC$,$AM = BC$。在$Rt\triangle CDM$中,由勾股定理,得$CD^{2}=DM^{2}+CM^{2}$。$\because CD = AD + BC = a + b$,$DM=\vert a - b\vert$,$CM = 2r$,$\therefore(a + b)^{2}=(a - b)^{2}+4r^{2}$。
$\therefore r^{2}=AD· BC = ab = 4$。$m=\frac{2}{2 + a}+\frac{2}{2 + b}=\frac{ab}{ab + a}+\frac{ab}{ab + b}=\frac{b}{1 + b}+\frac{a}{1 + a}=n$。
(3)$\because CD$,$AD$,$BC$均为该半圆的切线,$\therefore DA = DE$,$CB = CE$。$\because AD\perp AB$,$BC\perp AB$,$\therefore AD// BC$。$\therefore\triangle DAG\sim\triangle BCG$。$\therefore\frac{CG}{GA}=\frac{CB}{AD}=\frac{CE}{ED}$。$\therefore\frac{CG}{CA}=\frac{CE}{CD}$。$\because\angle ACD = \angle GCE$,$\therefore\triangle ACD\sim\triangle GCE$。$\therefore\angle ADC = \angle GEC$。$\therefore EG// AD// BC$,$FG// AD// BC$。$\therefore\frac{FG}{BC}=\frac{AF}{AB}$,$\frac{FG}{AD}=\frac{BF}{AB}$。$\therefore\frac{FG}{BC}+\frac{FG}{AD}=1$。$\therefore\frac{1}{BC}+\frac{1}{AD}=\frac{1}{FG}$。同理,可得$\frac{1}{BC}+\frac{1}{AD}=\frac{1}{EG}$。$\therefore FG = EG = x$。由
(2)可知,$r^{2}=AD· BC = DE· EC = 1$。$\therefore\frac{1}{DE}+\frac{1}{CE}=\frac{1}{BC}+\frac{1}{AD}=\frac{1}{EG}=\frac{DE + CE}{DE· CE}=\frac{DC}{1}=\frac{1}{x}$。易知在$Rt\triangle ABE$中,$\because\frac{1}{2}AE· BE=\frac{1}{2}·2x·2r = 2x$,$\therefore AE· BE = 4x$。
$\therefore\frac{4}{AE· BE}=\frac{4}{4x}=\frac{1}{x}$。$\therefore y=\frac{4}{AE· BE}+\frac{1}{FG}+DC=\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}$
22.
(1)如图①,连接$CO$并延长,交$DA$的延长线于点$M$,过点$O$作$OE\perp CD$于点$E$。$\because AD$与$BC$均为该半圆的切线,$\therefore AD\perp AB$,$BC\perp AB$。$\therefore AD// BC$。$\therefore\angle M = \angle OCB$。$\because O$为$AB$的中点,$\therefore OA = OB$。在$\triangle OAM$和$\triangle OBC$中,$\begin{cases}\angle M = \angle OCB\\\angle OAM = \angle OBC = 90^{\circ}\\OA = OB\end{cases}$,$\therefore\triangle OAM\cong\triangle OBC$。$\therefore AM = BC$。
$\because CD = AD + BC$,$\therefore CD = AD + AM = DM$。$\therefore\angle M = \angle OCE$。$\therefore\angle OCB = \angle OCE$,即$CO$平分$\angle BCD$。又$\because OE\perp CD$,$OB\perp CB$,$\therefore OE = OB$。$\therefore CD$与该半圆相切。
(2)$m = n$ 理由:如图②,过点$C$作$CM\perp AD$于点$M$。易得四边形$AMCB$是矩形,$\therefore AB = MC$,$AM = BC$。在$Rt\triangle CDM$中,由勾股定理,得$CD^{2}=DM^{2}+CM^{2}$。$\because CD = AD + BC = a + b$,$DM=\vert a - b\vert$,$CM = 2r$,$\therefore(a + b)^{2}=(a - b)^{2}+4r^{2}$。
$\therefore r^{2}=AD· BC = ab = 4$。$m=\frac{2}{2 + a}+\frac{2}{2 + b}=\frac{ab}{ab + a}+\frac{ab}{ab + b}=\frac{b}{1 + b}+\frac{a}{1 + a}=n$。
(3)$\because CD$,$AD$,$BC$均为该半圆的切线,$\therefore DA = DE$,$CB = CE$。$\because AD\perp AB$,$BC\perp AB$,$\therefore AD// BC$。$\therefore\triangle DAG\sim\triangle BCG$。$\therefore\frac{CG}{GA}=\frac{CB}{AD}=\frac{CE}{ED}$。$\therefore\frac{CG}{CA}=\frac{CE}{CD}$。$\because\angle ACD = \angle GCE$,$\therefore\triangle ACD\sim\triangle GCE$。$\therefore\angle ADC = \angle GEC$。$\therefore EG// AD// BC$,$FG// AD// BC$。$\therefore\frac{FG}{BC}=\frac{AF}{AB}$,$\frac{FG}{AD}=\frac{BF}{AB}$。$\therefore\frac{FG}{BC}+\frac{FG}{AD}=1$。$\therefore\frac{1}{BC}+\frac{1}{AD}=\frac{1}{FG}$。同理,可得$\frac{1}{BC}+\frac{1}{AD}=\frac{1}{EG}$。$\therefore FG = EG = x$。由
(2)可知,$r^{2}=AD· BC = DE· EC = 1$。$\therefore\frac{1}{DE}+\frac{1}{CE}=\frac{1}{BC}+\frac{1}{AD}=\frac{1}{EG}=\frac{DE + CE}{DE· CE}=\frac{DC}{1}=\frac{1}{x}$。易知在$Rt\triangle ABE$中,$\because\frac{1}{2}AE· BE=\frac{1}{2}·2x·2r = 2x$,$\therefore AE· BE = 4x$。
$\therefore\frac{4}{AE· BE}=\frac{4}{4x}=\frac{1}{x}$。$\therefore y=\frac{4}{AE· BE}+\frac{1}{FG}+DC=\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}$
23. (2025·湖北)在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,将$\triangle ABC$绕点$C$旋转得到$\triangle DEC$,点$A$的对应点$D$落在边$AB$上,连接$BE$。
(1) 如图①,求证:$\triangle BCE\sim\triangle ACD$。
(2) 如图②,当$BC = 2$,$AC = 1$时,求$BE$的长。
(3) 如图③,过点$E$作$AB$的平行线,交$AC$的延长线于点$F$,过点$B$作$AC$的平行线,交$EF$于点$G$,$DE$与$BC$交于点$K$。
① 求证:$AC = CF$;
② 当$\frac{GF}{GB}=\frac{5}{6}$时,直接写出$\frac{KD}{KE}$的值。

(1) 如图①,求证:$\triangle BCE\sim\triangle ACD$。
(2) 如图②,当$BC = 2$,$AC = 1$时,求$BE$的长。
(3) 如图③,过点$E$作$AB$的平行线,交$AC$的延长线于点$F$,过点$B$作$AC$的平行线,交$EF$于点$G$,$DE$与$BC$交于点$K$。
① 求证:$AC = CF$;
② 当$\frac{GF}{GB}=\frac{5}{6}$时,直接写出$\frac{KD}{KE}$的值。
答案:
23.
(1)$\because$将$\triangle ABC$绕点$C$旋转得到$\triangle DEC$,点$A$的对应点$D$落在边$AB$上,$\therefore AC = CD$,$CB = CE$,$\angle ACD = \angle BCE$。$\because\frac{AC}{CB}=\frac{CD}{CE}$,$\therefore\triangle BCE\sim\triangle ACD$。
(2)$\because BC = 2$,$AC = 1$,$\angle ACB = 90^{\circ}$,$\therefore AC = CD = 1$,$AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{1^{2}+2^{2}}=\sqrt{5}$。$\therefore\tan A=\frac{BC}{AC}=2$。过点$D$作$DH\perp AC$于点$H$,则$\tan A=\frac{DH}{AH}=2$。$\therefore DH = 2AH$。在$Rt\triangle CDH$中,$CH^{2}+DH^{2}=CD^{2}$,即$(1 - AH)^{2}+(2AH)^{2}=1^{2}$,解得$AH=\frac{2}{5}$或$AH = 0$(舍去)。$\therefore DH=\frac{4}{5}$。在$Rt\triangle ADH$中,$AH^{2}+DH^{2}=AD^{2}$,$\therefore AD=\sqrt{AH^{2}+(2AH)^{2}}=\sqrt{5}AH=\frac{2\sqrt{5}}{5}$。
$\because\triangle BCE\sim\triangle ACD$,$\therefore\frac{BE}{AD}=\frac{BC}{AC}$,即$\frac{BE}{2\sqrt{5}}=\frac{2}{1}$。$\therefore BE=\frac{4\sqrt{5}}{5}$。
(3)①设旋转角为$\alpha$,则$\angle ACD = \angle BCE = \alpha$,$AC = CD$,$CB = CE$,$\therefore\angle CDA = \angle A=\frac{180^{\circ}-\alpha}{2}=90^{\circ}-\frac{1}{2}\alpha$,$\angle CEB = \angle CBE=\frac{180^{\circ}-\alpha}{2}=90^{\circ}-\frac{1}{2}\alpha$。$\because\angle ACB = 90^{\circ}$,$\therefore\angle BCF = 90^{\circ}$,$\angle DCB = 90^{\circ}-\alpha$。$\angle ECF = 90^{\circ}-\alpha$。$\therefore\angle DCB = \angle ECF$。
$\because GF// AB$,$\therefore\angle F + \angle A = 180^{\circ}$。$\because\angle CDA + \angle CDB = 180^{\circ}$,$\angle CDA = \angle A$,$\therefore\angle CDB = \angle F$。$\because\angle DCB = \angle ECF$,$\angle CDB = \angle F$,$CB = CE$,$\therefore\triangle BCD\cong\triangle ECF$。$\therefore CD = CF$。$\because CD = AC$,$\therefore AC = CF$。②$\because\frac{GF}{GB}=\frac{5}{6}$,$\therefore$设$GF = 5k$,$GB = 6k$。$\because GF// AB$,$BG// AF$,$\therefore$四边形$ABGF$是平行四边形。$\therefore AB = GF = 5k$,$AF = BG = 6k$,$\angle G = \angle A$。由①,得$CD = AC = CF = 3k$。在$Rt\triangle ABC$中,$AB^{2}=BC^{2}+AC^{2}$,$\therefore BC=\sqrt{AB^{2}-AC^{2}}=\sqrt{(5k)^{2}-(3k)^{2}}=4k$。$\therefore\sin A=\frac{BC}{AB}=\frac{4k}{5k}=\frac{4}{5}$。$\therefore\sin G = \sin A=\frac{4}{5}$。由旋转的性质,可得$CE = CB$,$\therefore\angle CEB = \angle CBE$。$\because\triangle CBD\cong\triangle CEF$,$\therefore\angle CBD = \angle CEF$。$\because GF// AB$,$\therefore\angle FEB + \angle ABE = 180^{\circ}$,即$\angle CEF + \angle CEB + \angle CBE + \angle CBD = 180^{\circ}$,即$2(\angle CEF + \angle CEB)=2\angle FEB = 180^{\circ}$。$\therefore\angle FEB = 90^{\circ}$。$\therefore\angle BEG = 90^{\circ}$。$\therefore\sin G=\frac{BE}{BG}=\frac{4}{5}$,即$\frac{BE}{6k}=\frac{4}{5}$。$\therefore BE=\frac{24}{5}k$。由①,得$\angle ADC = \angle CEB = 90^{\circ}-\frac{1}{2}\alpha$,$\angle ADC + \angle CDB = 180^{\circ}$,$\therefore\angle CEB + \angle CDB = 180^{\circ}$。$\therefore C$,$D$,$B$,$E$四点共圆。$\therefore\angle BED = \angle BCD$。$\because\angle BEK = \angle KCD$,$\angle BKE = \angle DKC$,$\therefore\triangle BEK\sim\triangle DCK$。$\therefore\frac{DK}{BK}=\frac{CK}{EK}=\frac{CD}{EB}=\frac{3k}{\frac{24}{5}k}=\frac{5}{8}$。设$DK = 5x$,$BK = 8x$,$CK = 5y$,$EK = 8y$,则$BC = BK + CK = 8x + 5y = 4k$①。由旋转的性质,可得$DE = AB = 5k$,$\therefore DE = DK + EK = 5x + 8y = 5k$②。联立①②,可得$x=\frac{7}{39}k$,$y=\frac{20}{39}k$,$\therefore\frac{KD}{KE}=\frac{5x}{8y}=\frac{5×\frac{7}{39}k}{8×\frac{20}{39}k}=\frac{7}{32}$。
(1)$\because$将$\triangle ABC$绕点$C$旋转得到$\triangle DEC$,点$A$的对应点$D$落在边$AB$上,$\therefore AC = CD$,$CB = CE$,$\angle ACD = \angle BCE$。$\because\frac{AC}{CB}=\frac{CD}{CE}$,$\therefore\triangle BCE\sim\triangle ACD$。
(2)$\because BC = 2$,$AC = 1$,$\angle ACB = 90^{\circ}$,$\therefore AC = CD = 1$,$AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{1^{2}+2^{2}}=\sqrt{5}$。$\therefore\tan A=\frac{BC}{AC}=2$。过点$D$作$DH\perp AC$于点$H$,则$\tan A=\frac{DH}{AH}=2$。$\therefore DH = 2AH$。在$Rt\triangle CDH$中,$CH^{2}+DH^{2}=CD^{2}$,即$(1 - AH)^{2}+(2AH)^{2}=1^{2}$,解得$AH=\frac{2}{5}$或$AH = 0$(舍去)。$\therefore DH=\frac{4}{5}$。在$Rt\triangle ADH$中,$AH^{2}+DH^{2}=AD^{2}$,$\therefore AD=\sqrt{AH^{2}+(2AH)^{2}}=\sqrt{5}AH=\frac{2\sqrt{5}}{5}$。
$\because\triangle BCE\sim\triangle ACD$,$\therefore\frac{BE}{AD}=\frac{BC}{AC}$,即$\frac{BE}{2\sqrt{5}}=\frac{2}{1}$。$\therefore BE=\frac{4\sqrt{5}}{5}$。
(3)①设旋转角为$\alpha$,则$\angle ACD = \angle BCE = \alpha$,$AC = CD$,$CB = CE$,$\therefore\angle CDA = \angle A=\frac{180^{\circ}-\alpha}{2}=90^{\circ}-\frac{1}{2}\alpha$,$\angle CEB = \angle CBE=\frac{180^{\circ}-\alpha}{2}=90^{\circ}-\frac{1}{2}\alpha$。$\because\angle ACB = 90^{\circ}$,$\therefore\angle BCF = 90^{\circ}$,$\angle DCB = 90^{\circ}-\alpha$。$\angle ECF = 90^{\circ}-\alpha$。$\therefore\angle DCB = \angle ECF$。
$\because GF// AB$,$\therefore\angle F + \angle A = 180^{\circ}$。$\because\angle CDA + \angle CDB = 180^{\circ}$,$\angle CDA = \angle A$,$\therefore\angle CDB = \angle F$。$\because\angle DCB = \angle ECF$,$\angle CDB = \angle F$,$CB = CE$,$\therefore\triangle BCD\cong\triangle ECF$。$\therefore CD = CF$。$\because CD = AC$,$\therefore AC = CF$。②$\because\frac{GF}{GB}=\frac{5}{6}$,$\therefore$设$GF = 5k$,$GB = 6k$。$\because GF// AB$,$BG// AF$,$\therefore$四边形$ABGF$是平行四边形。$\therefore AB = GF = 5k$,$AF = BG = 6k$,$\angle G = \angle A$。由①,得$CD = AC = CF = 3k$。在$Rt\triangle ABC$中,$AB^{2}=BC^{2}+AC^{2}$,$\therefore BC=\sqrt{AB^{2}-AC^{2}}=\sqrt{(5k)^{2}-(3k)^{2}}=4k$。$\therefore\sin A=\frac{BC}{AB}=\frac{4k}{5k}=\frac{4}{5}$。$\therefore\sin G = \sin A=\frac{4}{5}$。由旋转的性质,可得$CE = CB$,$\therefore\angle CEB = \angle CBE$。$\because\triangle CBD\cong\triangle CEF$,$\therefore\angle CBD = \angle CEF$。$\because GF// AB$,$\therefore\angle FEB + \angle ABE = 180^{\circ}$,即$\angle CEF + \angle CEB + \angle CBE + \angle CBD = 180^{\circ}$,即$2(\angle CEF + \angle CEB)=2\angle FEB = 180^{\circ}$。$\therefore\angle FEB = 90^{\circ}$。$\therefore\angle BEG = 90^{\circ}$。$\therefore\sin G=\frac{BE}{BG}=\frac{4}{5}$,即$\frac{BE}{6k}=\frac{4}{5}$。$\therefore BE=\frac{24}{5}k$。由①,得$\angle ADC = \angle CEB = 90^{\circ}-\frac{1}{2}\alpha$,$\angle ADC + \angle CDB = 180^{\circ}$,$\therefore\angle CEB + \angle CDB = 180^{\circ}$。$\therefore C$,$D$,$B$,$E$四点共圆。$\therefore\angle BED = \angle BCD$。$\because\angle BEK = \angle KCD$,$\angle BKE = \angle DKC$,$\therefore\triangle BEK\sim\triangle DCK$。$\therefore\frac{DK}{BK}=\frac{CK}{EK}=\frac{CD}{EB}=\frac{3k}{\frac{24}{5}k}=\frac{5}{8}$。设$DK = 5x$,$BK = 8x$,$CK = 5y$,$EK = 8y$,则$BC = BK + CK = 8x + 5y = 4k$①。由旋转的性质,可得$DE = AB = 5k$,$\therefore DE = DK + EK = 5x + 8y = 5k$②。联立①②,可得$x=\frac{7}{39}k$,$y=\frac{20}{39}k$,$\therefore\frac{KD}{KE}=\frac{5x}{8y}=\frac{5×\frac{7}{39}k}{8×\frac{20}{39}k}=\frac{7}{32}$。
查看更多完整答案,请扫码查看