2026年通城学典全国中考试题分类精粹中考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年通城学典全国中考试题分类精粹中考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年通城学典全国中考试题分类精粹中考数学》

第112页
24. (2025·苏州)两个智能机器人在如图所示的$Rt\triangle ABC$区域工作,$\angle ABC = 90^{\circ}$,$AB = 40m$,$BC = 30m$,直线$BD$为生产流水线,且$BD$平分$\triangle ABC$的面积(即$D$为$AC$的中点)。机器人甲从点$A$出发,沿$A\rightarrow B$的方向以$v_1m/min$的速度匀速运动,其所在位置用点$P$表示,机器人乙从点$B$出发,沿$B\rightarrow C\rightarrow D$的方向以$v_2m/min$的速度匀速运动,其所在位置用点$Q$表示。两个机器人同时出发,设机器人运动的时间为$t\ min$,记点$P$到$BD$的距离(即垂线段$PP'$的长)为$d_1m$,点$Q$到$BD$的距离(即垂线段$QQ'$的长)为$d_2m$。当机器人乙到达终点时,两个机器人立即同时停止运动,此时$d_1 = 7.5$。$d_2$与$t$的部分对应数值如下表($t_1 < t_2$):

(1)机器人乙运动的路线长为
55
$m$;
(2)求$t_2 - t_1$的值;
(3)当机器人甲、乙到生产流水线$BD$的距离相等(即$d_1 = d_2$)时,求$t$的值。
答案:
24.
(1) 55 解析:$\because \angle ABC = 90^{\circ}$,$AB = 40 m$,$BC = 30 m$,
$\therefore AC = \sqrt{30^{2} + 40^{2}} = 50 m$。$\because$D为AC的中点,$\therefore CD = \frac{1}{2}AC = 25 m$。$\because BC + CD = 30 + 25 = 55(m)$,$\therefore$机器人乙
运动的路线长为$55 m$。
(2) 根据题意,得$v_{2} = \frac{55}{5.5} = 10$。$\because$在$Rt \triangle ABC$中,
$\angle ABC = 90^{\circ}$,D为AC的中点,$\therefore BD = CD = AD = 25 m$。
$\therefore \angle ABD = \angle BAC$,$\angle DBC = \angle C$。$\therefore \sin \angle ABD = \sin \angle BAC = \frac{3}{5}$,$\sin \angle DBC = \sin C = \frac{4}{5}$。当点Q在BC上
时,$QQ' = BQ · \sin \angle DBC = 10t × \frac{4}{5} = 8t(m)$,即$d_{2} = 8t$。
$\therefore 8t_{1} = 16$,解得$t_{1} = 2$。当点Q在CD上时,过点A作
$AH \perp BD$,垂足为H(如图),则$AH = AB · \sin \angle ABD = 40 × \frac{3}{5} = 24(m)$。$\because \angle CDB = \angle ADH$,$\therefore \sin \angle CDB = \sin \angle ADH = \frac{24}{25}$。$\therefore QQ' = QD · \sin \angle CDB = (55 - 10t) × \frac{24}{25} = \frac{264}{5} - \frac{48}{5}t(m)$,即$d_{2} = \frac{264}{5} - \frac{48}{5}t$。$\therefore \frac{264}{5} - \frac{48}{5}t_{2} = 16$,
解得$t_{2} = \frac{23}{6}$。$\therefore t_{2} - t_{1} = \frac{11}{6}$
(3) 当$t = 5.5$时,
$d_{1} = 7.5$,此时$BP = \frac{PP'}{\sin \angle ABD} = \frac{7.5}{\frac{3}{5}} = 12.5(m)$,$\therefore AP = AB - BP = 40 - 12.5 = 27.5(m)$。$v_{1} = \frac{27.5}{5.5} = 5$。$\therefore PP' = BP · \sin \angle ABD = (24 - 3t) × \frac{3}{5} = \frac{72}{5} - \frac{9}{5}t(m)$,即$d_{1} = 24 - 3t$。当点Q在BC上时,由$d_{1} = d_{2}$,得$24 - 3t = 8t$,解得$t = \frac{24}{11}$。当点Q在CD上时,由$d_{1} = d_{2}$,得$24 - 3t = \frac{264}{5} - \frac{48}{5}t$,解得$t = \frac{48}{11}$。$\therefore t = \frac{24}{11}$或$t = \frac{48}{11}$
A第24题
25. (2025·内江)如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,$\angle ABC$的平分线$BD$交$AC$于点$D$,$O$是边$AB$上一点,以点$O$为圆心、$OB$长为半径作圆,$\odot O$恰好经过点$D$,交$AB$于点$E$。
(1)求证:直线$AC$是$\odot O$的切线。
(2)若$E$为$AO$的中点,$AD = 3$,求涂色部分的面积。
(3)连接$DE$。若$\sin\angle DBA = \frac{\sqrt{5}}{5}$,求$\cos A$的值。
答案: 25.
(1) 连接OD。$\because \angle C = 90^{\circ}$,$\therefore BC \perp AC$。$\because$BD是
$\angle ABC$的平分线,$\therefore \angle OBD = \angle CBD$。$\because OB$是$\odot O$的半
径,$\odot O$恰好经过点D,交AB于点E,$\therefore OE = OD = OB$。
$\therefore \angle ODB = \angle OBD$。$\therefore \angle ODB = \angle CBD$。$\therefore OD // BC$。
$\therefore OD \perp AC$。又$\because OD$是$\odot O$的半径,$\therefore$直线AC是$\odot O$的
切线
(2) 设$\odot O$的半径为R,则$OD = OE = R$。$\because$E
为AO的中点,$\therefore AE = OE = R$。$\therefore AO = 2R$。由
(1) 可知,
$OD \perp AC$,$\therefore$在$Rt \triangle AOD$中,$\sin A = \frac{OD}{AO} = \frac{R}{2R} = \frac{1}{2}$。
$\therefore \angle A = 30^{\circ}$。$\therefore \angle AOD = 60^{\circ}$。$\because AD = 3$,$\tan A = \frac{OD}{AD}$,
$\therefore OD = AD · \tan A = 3 × \tan 30^{\circ} = \sqrt{3}$。$\therefore S_{扇形EOD} = \frac{60\pi × (\sqrt{3})^{2}}{360} = \frac{\pi}{2}$。$\therefore$涂
色部分的面积为$S_{\triangle AOD} - S_{扇形EOD} = \frac{1}{2} × 3 × \sqrt{3} - \frac{\pi}{2} = \frac{3\sqrt{3} - \pi}{2}$
(3) $\because BE$是
$\odot O$的直径,$\therefore \angle BDE = 90^{\circ}$。$\because$在$Rt \triangle BDE$中,
$\sin \angle DBA = \frac{DE}{BE} = \frac{\sqrt{5}}{5}$,$\therefore$设$DE = \sqrt{5}a$,$BE = 5a$。由勾股定
理,得$BD = \sqrt{BE^{2} - DE^{2}} = \sqrt{(5a)^{2} - (\sqrt{5}a)^{2}} = 2\sqrt{5}a$。
$\because \angle OBD = \angle CBD$,$\angle BDE = \angle C = 90^{\circ}$,$\therefore \triangle BDE \sim \triangle BCD$。$\therefore \frac{DE}{CD} = \frac{BD}{BC} = \frac{BE}{BD}$。
$\therefore \frac{\sqrt{5}a}{CD} = \frac{2\sqrt{5}a}{BC} = \frac{5a}{2\sqrt{5}a} = \frac{\sqrt{5}}{2}$。$\therefore CD = 2a$,$BC = 4a$。由
(1) 可知,
$OD // BC$,$\therefore \triangle AOD \sim \triangle ABC$。$\therefore \frac{AD}{AC} = \frac{OD}{BC}$。$\therefore \frac{AD}{AD + 2a} = \frac{2.5a}{4a} = \frac{5}{8}$。
在$Rt \triangle AOD$中,由勾股定理,得$AO = \sqrt{AD^{2} + OD^{2}} = \sqrt{(\frac{10a}{3})^{2} + (2.5a)^{2}} = \frac{25a}{6}$,$\therefore \cos A = \frac{AD}{AO} = \frac{\frac{10a}{3}}{\frac{25a}{6}} = \frac{4}{5}$。

查看更多完整答案,请扫码查看

关闭