2025年金版新学案高中数学必修1人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高中数学必修1人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



 5 (2022·全国乙卷)设全集$U=\{1,2,3,4,5\}$,集合$M$满足$\complement_U M=\{1,3\}$,则 (
A
)

A.$2\in M$  
B.$3\in M$  
C.$4\notin M$  
D.$5\notin M$
答案: A
由题知$M = \complement_{U}(\complement_{U}M) = \{ 2,4,5\}$,对比选项知,A正确,BCD错误。故选A。
 6 (2020·新高考Ⅰ卷)某中学的学生积极参加体育锻炼,其中有 96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 (
C
)

A.62%  
B.56%  
C.46%  
D.42%
答案: C
设该校学生总数为$100$,既喜欢足球又喜欢游泳的学生数为$x$;则$100×96\% = 100×60\% + 100×82\% - x$,解得$x = 46$,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为$46\%$。故选C。
 7 (2024·新课标Ⅱ卷)已知命题$p:\forall x\in \mathbf{R}$,$|x+1|>1$;命题$q:\exists x>0$,$x^3 =x$. 则(
B
)

A.$p$和$q$都是真命题
B.$\neg p$和$q$都是真命题
C.$p$和$\neg q$都是真命题
D.$\neg p$和$\neg q$都是真命题
答案: B
因为$\forall x\in\mathbf{R}$,$|x + 1|\geq0$,所以命题$p$为假命题,故$\neg p$为真命题。因为$x^{3}=x$,所以$x^{3}-x = 0$,所以$x(x^{2}-1) = 0$,即$x(x + 1)(x - 1) = 0$,解得$x = - 1$或$x = 0$或$x = 1$,所以$\exists x\gt0$,使得$x^{3}=x$,所以命题$q$为真命题,所以$\neg q$为假命题,所以$\neg p$和$q$都是真命题。故选B。
 8 (2023·天津卷)“$a^2 =b^2$”是“$a^2 +b^2 =2ab$”的 (
B
)

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
答案: B
由$a^{2}=b^{2}$可得$a = \pm b$,所以$a^{2}+b^{2}=2a^{2}$或$a^{2}+b^{2}=2b^{2}$,由$a^{2}+b^{2}=2ab$可得$(a - b)^{2}=0$,即$a = b$,所以$a^{2}=b^{2}$,所以“$a^{2}=b^{2}$”是“$a^{2}+b^{2}=2ab$”的必要不充分条件。故选B。

查看更多完整答案,请扫码查看

关闭