2025年金版新学案高中数学必修1人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高中数学必修1人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



典例 3
(链教材 P183 7)求证:(1)$\sin ^{4}x-\cos ^{4}x=2\sin ^{2}x - 1$;
(2)$\dfrac {\tan x\sin x}{\tan x-\sin x}=\dfrac {1+\cos x}{\sin x}$。
听课笔记:
答案: 证明:
(1)左边$ = (\sin^{2}x + \cos^{2}x)(\sin^{2}x - \cos^{2}x) = \sin^{2}x - \cos^{2}x = \sin^{2}x - (1 - \sin^{2}x) = 2\sin^{2}x - 1 =$右边,所以原式成立。
(2)由$\sin x \neq 0$,得$\cos x \neq 1$,
则左边$ = \frac{\frac{\sin x}{\cos x} · \sin x}{\frac{\sin x}{\cos x} - \sin x} = \frac{\sin^{2}x}{\sin x - \sin x\cos x} = \frac{1 - \cos^{2}x}{\sin x(1 - \cos x)} = \frac{(1 + \cos x)(1 - \cos x)}{\sin x(1 - \cos x)} = \frac{1 + \cos x}{\sin x} =$右边,所以原式成立。
求证:(1)$\sin \alpha (1+\tan \alpha )+\cos \alpha \left(1+\dfrac {1}{\tan \alpha }\right)=\dfrac {1}{\sin \alpha }+\dfrac {1}{\cos \alpha }$;
(2)$\dfrac {\sin \alpha -\cos \alpha +1}{\sin \alpha +\cos \alpha -1}=\dfrac {1+\sin \alpha }{\cos \alpha }$。
答案: 证明:
(1)左边$ = \sin\alpha · \left(1 + \frac{\sin\alpha}{\cos\alpha}\right) + \cos\alpha · \left(1 + \frac{\cos\alpha}{\sin\alpha}\right) = \sin\alpha + \frac{\sin^{2}\alpha}{\cos\alpha} + \cos\alpha + \frac{\cos^{2}\alpha}{\sin\alpha} = \frac{\sin^{2}\alpha + \cos^{2}\alpha}{\sin\alpha} + \frac{\sin^{2}\alpha + \cos^{2}\alpha}{\cos\alpha} = \frac{1}{\sin\alpha} + \frac{1}{\cos\alpha} =$右边,所以原式成立。
(2)左边$ = \frac{(\sin\alpha - \cos\alpha + 1)(\sin\alpha + \cos\alpha + 1)}{(\sin\alpha + \cos\alpha - 1)(\sin\alpha + \cos\alpha + 1)} = \frac{(\sin\alpha + 1)^{2} - \cos^{2}\alpha}{(\sin\alpha + \cos\alpha)^{2} - 1} = \frac{(\sin^{2}\alpha + 2\sin\alpha + 1) - (1 - \sin^{2}\alpha)}{\sin^{2}\alpha + \cos^{2}\alpha + 2\sin\alpha\cos\alpha - 1} = \frac{2\sin\alpha(\sin\alpha + 1)}{2\sin\alpha\cos\alpha} = \frac{1 + \sin\alpha}{\cos\alpha} =$右边,所以原式成立。
1. 已知$\cos \alpha =\dfrac {1}{3}$,则$\sin \alpha =$(
C
)

A.$\dfrac {2\sqrt {2}}{3}$
B.$-\dfrac {\sqrt {6}}{3}$
C.$\pm \dfrac {2\sqrt {2}}{3}$
D.$\pm \dfrac {\sqrt {6}}{3}$
答案: C
2. 若$\alpha$是第四象限角,$\tan \alpha =-\dfrac {5}{12}$,则$\sin \alpha =$(
D
)

A.$\dfrac {1}{5}$
B.$-\dfrac {1}{4}$
C.$\dfrac {5}{13}$
D.$-\dfrac {5}{13}$
答案: D
3. 已知$\sin \alpha =\dfrac {\sqrt {5}}{5}$,则$\sin ^{4}\alpha -\cos ^{4}\alpha =$(
A
)

A.$-\dfrac {3}{5}$
B.$-\dfrac {1}{5}$
C.$\dfrac {1}{5}$
D.$\dfrac {3}{5}$
答案: A
4. 化简:$\sin \alpha \cos \alpha \left(\tan \alpha +\dfrac {1}{\tan \alpha }\right)=$
1
答案: 1

查看更多完整答案,请扫码查看

关闭