2025年金版新学案高中数学必修1人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高中数学必修1人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



(1) 已知$ M $,$ N $均为$ \mathbf{R} $的子集,且$ (\complement_{\mathbf{R}} M) \subseteq N $,则$ M \cup (\complement_{\mathbf{R}} N) = $(
B
)

A.$ \varnothing $
B.$ M $
C.$ N $
D.$ \mathbf{R} $
答案:
(1)B
(1)因为$(\complement_{\mathbf{R}}M)\supseteq N$,所以$M\supseteq (\complement_{\mathbf{R}}N)$,所以$M\cup (\complement_{\mathbf{R}}N) = M$. 故选 B.
(2) 已知全集$ U = \{ x | x < 10, x \in \mathbf{N}^* \} $,$ A = \{ 2, 4, 5, 8 \} $,$ B = \{ 1, 3, 5, 8 \} $,求$ \complement_U (A \cup B) $,$ \complement_U (A \cap B) $,$ (\complement_U A) \cap (\complement_U B) $,$ (\complement_U A) \cup (\complement_U B) $.
答案:
(2)由题意得$A\cup B = \{1,2,3,4,5,8\}$,$A\cap B = \{5,8\}$,$U = \{1,2,3,4,5,6,7,8,9\}$,
所以$\complement_{U}(A\cup B) = \{6,7,9\}$,
$\complement_{U}(A\cap B) = \{1,2,3,4,6,7,9\}$.
所以$(\complement_{U}A)\cap (\complement_{U}B) = \complement_{U}(A\cup B) = \{6,7,9\}$,
$(\complement_{U}A)\cup (\complement_{U}B) = \complement_{U}(A\cap B) = \{1,2,3,4,6,7,9\}$.
典例3
设集合$ A = \{ x | x + m \geq 0 \} $,$ B = \{ x | -2 < x < 4 \} $,全集$ U = \mathbf{R} $,且$ (\complement_U A) \cap B = \varnothing $,求实数$ m $的取值范围.
听课笔记:
[变式探究]
1. (变条件)将本例条件“$ (\complement_U A) \cap B = \varnothing $”改为“$ (\complement_U A) \cap B \neq \varnothing $”,其他条件不变,则实数$ m $的取值范围是什么?
2. (变条件)将本例条件“$ (\complement_U A) \cap B = \varnothing $”改为“$ (\complement_U B) \cup A = \mathbf{R} $”,其他条件不变,则实数$ m $的取值范围是什么?
答案:
解:法一(直接法):由$A = \{x\mid x + m\geqslant 0\} = \{x\mid x\geqslant -m\}$,得$\complement_{U}A = \{x\mid x\lt -m\}$.因为$B = \{x\mid -2\lt x\lt 4\}$,$(\complement_{U}A)\cap B = \varnothing$,在数轴上表示集合$B$,$\complement_{U}A$如图.所以$-m\leqslant -2$,即$m\geqslant 2$,所以实数$m$的取值范围是$\{m\mid m\geqslant 2\}$.法二(集合间的关系):由$(\complement_{U}A)\cap B = \varnothing$可知$B\subseteq A$,又$B = \{x\mid -2\lt x\lt 4\}$,$A = \{x\mid x + m\geqslant 0\} = \{x\mid x\geqslant -m\}$,结合数轴:得$-m\leqslant -2$,即$m\geqslant 2$,所以实数$m$的取值范围是$\{m\mid m\geqslant 2\}$.
@@1.解:由已知得$A = \{x\mid x\geqslant -m\}$,所以$\complement_{U}A = \{x\mid x\lt -m\}$,又$(\complement_{U}A)\cap B\neq \varnothing$,所以$-m\gt -2$,解得$m\lt 2$.故实数$m$的取值范围为$\{m\mid m\lt 2\}$.2.解:由已知得$A = \{x\mid x\geqslant -m\}$,$\complement_{U}B = \{x\mid x\leqslant -2,或x\geqslant 4\}$.又$(\complement_{U}B)\cup A = \mathbf{R}$,所以$-m\leqslant -2$,解得$m\geqslant 2$.故实数$m$的取值范围为$\{m\mid m\geqslant 2\}$.
(1) 设$ U = \{ 0, 1, 2, 3 \} $,$ A = \{ x | x^2 + mx = 0 \} $,若$ \complement_U A = \{ 1, 2 \} $,则实数$ m = $
$-3$
.
答案:
(1)$-3$
(1)因为$U = \{0,1,2,3\}$,$\complement_{U}A = \{1,2\}$,所以$A = \{0,3\}$. 又$A = \{x\mid x^{2} + mx = 0\} = \{0,-m\}$,故$m = -3$.
(2) 已知全集$ U = \mathbf{R} $,$ A = \{ x | 1 \leq x < b \} $,$ \complement_U A = \{ x | x < 1 $,或$ x \geq 2 \} $,则实数$ b = $
$2$
.
答案:
(2)2
(2)因为$\complement_{U}A = \{x\mid x\lt 1,或x\geqslant 2\}$,所以$A = \{x\mid 1\leqslant x\lt 2\}$. 所以$b = 2$.

查看更多完整答案,请扫码查看

关闭