2025年金版新学案高中数学必修1人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高中数学必修1人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



典例 2 (链教材 P173 例 4)把下列各角度化成弧度,弧度化成角度:
(1)$120^{\circ}$; (2)$25^{\circ}30'$; (3)$\frac{\pi}{10}$;
(4)$-3$; (5)$-\frac{11\pi}{5}$; (6)$-1560^{\circ}$.
听课笔记:
答案: 2. 解:
(1)$120^{\circ} = 120×\frac{\pi}{180} = \frac{2\pi}{3}$.
(2)$25^{\circ}30' = 25.5^{\circ} = 25.5×\frac{\pi}{180} = \frac{17\pi}{120}$.
(3)$\frac{\pi}{10} = \frac{\pi}{10}×\left(\frac{180}{\pi}\right)^{\circ} = 18^{\circ}$.
(4)$-3 = -3×\left(\frac{180}{\pi}\right)^{\circ} \approx -171.9^{\circ}$.
(5)$-\frac{11\pi}{5} = -\frac{11\pi}{5}×\left(\frac{180}{\pi}\right)^{\circ} = -396^{\circ}$.
(6)$-1560^{\circ} = -1560×\frac{\pi}{180} = -\frac{26\pi}{3}$.
对点练 2. 把下列角度与弧度进行互化:
(1)$\frac{511}{6}\pi$; (2)$-\frac{5\pi}{12}$; (3)$10^{\circ}$; (4)$-855^{\circ}$.
答案: 2.解:
(1)$\frac{511}{6}\pi = \frac{511}{6}×180^{\circ} = 15330^{\circ}$.
(2)$-\frac{5\pi}{12} = -\frac{5}{12}×180^{\circ} = -75^{\circ}$.
(3)$10^{\circ} = 10×\frac{\pi}{180} = \frac{\pi}{18}$.
(4)$-855^{\circ} = -855×\frac{\pi}{180} = -\frac{19\pi}{4}$.
 3 将$-1125^{\circ}$写成$\alpha + 2k\pi(k \in \mathbf{Z})$的形式,其中$0 \leqslant \alpha < 2\pi$,并判断它是第几象限角.
听课笔记:
答案: 3. 解:$-1125^{\circ} = -1125×\frac{\pi}{180} = -\frac{25\pi}{4} = -8\pi + \frac{7\pi}{4}$,其中$\frac{3\pi}{2} < \frac{7\pi}{4} < 2\pi$,所以$\frac{7\pi}{4}$是第四象限角,所以$-1125^{\circ}$是第四象限角.
对点练 3. (1)与$120^{\circ}$角终边相同的角$\alpha$的集合为 (
D
)

A.$\{\alpha \mid \alpha = -\frac{2\pi}{3} + 2k\pi,k \in \mathbf{Z}\}$
B.$\{\alpha \mid \alpha = 120^{\circ} + 2k\pi,k \in \mathbf{Z}\}$
C.$\{\alpha \mid \alpha = \frac{\pi}{3} + k\pi,k \in \mathbf{Z}\}$
D.$\{\alpha \mid \alpha = \frac{2\pi}{3} + 2k\pi,k \in \mathbf{Z}\}$
答案: 3.
(1)D
(1)$120^{\circ} = \frac{2\pi}{3}$,故与$120^{\circ}$角终边相同的角$\alpha$的集合为$\left\{\alpha\mid \alpha = \frac{2\pi}{3} + 2k\pi, k\in \mathbf{Z}\right\}$.故选D.
(2)用弧度制写出终边在阴影部分的角的集合:

答案:
(2)①终边在阴影部分的角的集合为$\left\{\alpha\mid 2k\pi + \frac{\pi}{4} \leq \alpha \leq 2k\pi + \frac{2\pi}{3}, k\in \mathbf{Z}\right\}$.
②终边在阴影部分的角的集合为$\left\{\alpha\mid 2k\pi \leq \alpha \leq 2k\pi + \frac{\pi}{6}, k\in \mathbf{Z}\right\} \cup \left\{\alpha\mid 2k\pi + \pi \leq \alpha \leq 2k\pi + \frac{7\pi}{6}, k\in \mathbf{Z}\right\} = \left\{\alpha\mid k\pi \leq \alpha \leq k\pi + \frac{\pi}{6}, k\in \mathbf{Z}\right\}$.

查看更多完整答案,请扫码查看

关闭