第94页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
1. 在 Rt$\bigtriangleup ABC$中,$\angle C=90^{\circ},AB=4$,$\tan A = \sqrt{3}$,则$BC$的长为 (
A.3
B.2
C.$\sqrt{3}$
D.$2\sqrt{3}$
D
)A.3
B.2
C.$\sqrt{3}$
D.$2\sqrt{3}$
答案:
1.D
2. 如图,在$\bigtriangleup ABC$中,$AD\bot BC$,垂足为$ D$,若$AC = 6\sqrt{2}$,$\angle C = 45^{\circ}$,$\tan\angle ABC = 3$,则$BD =$

A.2
B.3
C.$3\sqrt{2}$
D.$2\sqrt{3}$
A
A.2
B.3
C.$3\sqrt{2}$
D.$2\sqrt{3}$
答案:
2.A
3. 已知等腰三角形的腰与底边的长度之比为$3:2$,则该等腰三角形底角的余弦值为
$\frac{1}{3}$
.
答案:
3.$\frac{1}{3}$
4. 已知点$A(1,4)$,$B(-2,0)$,那么直线$AB$与$x$轴夹角的正弦值是
$\frac{4}{5}$
.
答案:
4.$\frac{4}{5}$
5. 在 Rt$\bigtriangleup ABC$中,$\angle C = 90°$,$a$,$b$,$c$分别是$\angle A$,$\angle B$,$\angle C$的对边,根据下列条件解直角三角形.
(1)$c = 2\sqrt{3}$,$b = 3$;
(2)$\angle A = 45°$,$b = \sqrt{2}$;
(3)$\tan A = \frac{3}{4}$,$c = 20$.(参考数据:$\tan 37° \approx 0.75$)
(1)$c = 2\sqrt{3}$,$b = 3$;
(2)$\angle A = 45°$,$b = \sqrt{2}$;
(3)$\tan A = \frac{3}{4}$,$c = 20$.(参考数据:$\tan 37° \approx 0.75$)
答案:
5.解:
(1)由勾股定理,得$a = \sqrt{c^{2}-b^{2}} = \sqrt{(2\sqrt{3})^{2}-3^{2}} = \sqrt{3}$.
$\because \sin B = \frac{b}{c} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$,$\therefore \angle B = 60^{\circ}$,
$\therefore \angle A = 90^{\circ} - 60^{\circ} = 30^{\circ}$.
(2)$\because \angle A = 45^{\circ}$,$\therefore \angle B = 90^{\circ} - \angle A = 45^{\circ}$.
$\because \tan A = \frac{a}{b} = 1$,$b = \sqrt{2}$,$\therefore a = b = \sqrt{2}$,
$\therefore c = \sqrt{a^{2} + b^{2}} = \sqrt{(\sqrt{2})^{2} + (\sqrt{2})^{2}} = 2$.
(3)$\because \tan A = \frac{3}{4}$,$\therefore \angle A \approx 37^{\circ}$,$\therefore \angle B \approx 53^{\circ}$.
设$a = 3k$,$b = 4k$,则$(3k)^{2} + (4k)^{2} = 20^{2}$,
解得$k = 4$(负值舍去),
$\therefore a = 3k = 3 × 4 = 12$,$b = 4k = 4 × 4 = 16$.
(1)由勾股定理,得$a = \sqrt{c^{2}-b^{2}} = \sqrt{(2\sqrt{3})^{2}-3^{2}} = \sqrt{3}$.
$\because \sin B = \frac{b}{c} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$,$\therefore \angle B = 60^{\circ}$,
$\therefore \angle A = 90^{\circ} - 60^{\circ} = 30^{\circ}$.
(2)$\because \angle A = 45^{\circ}$,$\therefore \angle B = 90^{\circ} - \angle A = 45^{\circ}$.
$\because \tan A = \frac{a}{b} = 1$,$b = \sqrt{2}$,$\therefore a = b = \sqrt{2}$,
$\therefore c = \sqrt{a^{2} + b^{2}} = \sqrt{(\sqrt{2})^{2} + (\sqrt{2})^{2}} = 2$.
(3)$\because \tan A = \frac{3}{4}$,$\therefore \angle A \approx 37^{\circ}$,$\therefore \angle B \approx 53^{\circ}$.
设$a = 3k$,$b = 4k$,则$(3k)^{2} + (4k)^{2} = 20^{2}$,
解得$k = 4$(负值舍去),
$\therefore a = 3k = 3 × 4 = 12$,$b = 4k = 4 × 4 = 16$.
6. 如图,在 Rt$\bigtriangleup ABC$中,$\angle ACB = 90°$,$CD \perp AB$于点$D$,若$AD = 2BD$,则$\tan B$的值是 (

A.2
B.$\sqrt{2}$
C.$\sqrt{3}$
D.$\frac{\sqrt{2}}{2}$
B
)A.2
B.$\sqrt{2}$
C.$\sqrt{3}$
D.$\frac{\sqrt{2}}{2}$
答案:
6.B
7.(2024·宿豫期末)如图,方格纸中小正方形的边长都为1,点A,B,C都在格点上,那么$\sin A$的值为( )

A.$\frac{\sqrt{5}}{2}$
B.$\frac{\sqrt{5}}{5}$
C.$\frac{2\sqrt{5}}{5}$
D.$\frac{1}{3}$
A.$\frac{\sqrt{5}}{2}$
B.$\frac{\sqrt{5}}{5}$
C.$\frac{2\sqrt{5}}{5}$
D.$\frac{1}{3}$
答案:
7.C
8. 如图,在 Rt$\bigtriangleup ABC$中,$\angle C = 90°$,$AB$的垂直平分线分别交$BC$,$AB$于点$D$,$E$.如果$BC = 8$,$\tan A = \frac{4}{3}$,那么$BD =$

$\frac{25}{4}$
.
答案:
8.$\frac{25}{4}$
9. 如图,在 Rt$\bigtriangleup ABC$中,$\angle A = 90°$,$AB = AC$,$BD$是$AC$边上的中线,则$\tan\angle DBC$的值是

$\frac{1}{3}$
.
答案:
9.$\frac{1}{3}$
查看更多完整答案,请扫码查看