2026年启东中学作业本九年级数学下册苏科版宿迁专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年启东中学作业本九年级数学下册苏科版宿迁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年启东中学作业本九年级数学下册苏科版宿迁专版》

9. 如图,在边长为$1$的小正方形网格中,点$A$,$B$,$C$,$D$都在格点上,$AB$,$CD$相交于点$O$,则$\tan\angle AOD=$
2
.

答案: 9.2
10.(2024·泰安)如图,$AB$是$\odot O$的直径,$AH$是$\odot O$的切线,$C$为$\odot O$上任意一点,$D$为$\overset\frown{AC}$的中点,连接$BD$交$AC$于点$E$,延长$BD$与$AH$交于点$F$.若$DF=1$,$\tan B=\frac{1}{2}$,则$AE$的长为
$\sqrt{5}$
.
答案: 10.$\sqrt{5}$
11. 如图,在平行四边形$ABCD$中,$AE\bot BC$,$CF\bot AD$,垂足分别为$E$,$F$,$AE$,$CF$分别与$BD$交于点$G$,$H$,且$AB=2\sqrt{5}$.
(1)若$\tan\angle ABE=2$,求$CF$的长;
(2)求证:$BG=DH$.
答案: 11.
(1)解:$\because$四边形$ABCD$是平行四边形,
$\therefore AD// BC$,即$AF// EC$。
又$\because AE\perp BC$,$CF\perp AD$,$\therefore AE// CF$,
$\therefore$四边形$AECF$是平行四边形,$\therefore CF = AE$。
$\because \tan\angle ABE = 2$,$\therefore AB:AE:BE = \sqrt{5}:2:1$。
又$\because AB = 2\sqrt{5}$,$\therefore CF = AE = 4$。
(2)证明:$\because$四边形$ABCD$是平行四边形,
$\therefore AB = CD$,$AB// DC$,
$\therefore \angle ABD = \angle CDB$,即$\angle ABG = \angle CDH$。
$\because AE// FC$,$\therefore \angle AGH = \angle CHG$,
$\therefore \angle AGB = \angle CHD$。
在$\triangle ABG$和$\triangle CDH$中,$\begin{cases} \angle ABG = \angle CDH\\\angle AGB = \angle CHD\\AB = CD\end{cases}$
$\therefore \triangle ABG\cong\triangle CDH({\rm AAS})$,$\therefore BG = DH$。
12. 如图,在四边形$ABCD$中,$AB\bot BD$,$BC// AD$,连接$AC$交$BD$于点$E$,$\angle BAC=\angle ADB$,且$\tan\angle ADB=\frac{1}{2}$,$AE=\frac{3}{2}\sqrt{5}$.
(1)求$BD$的长;
(2)若$BC=\sqrt{5}$,求$CD$的长.
答案:
12.解:
(1)$\because$在四边形$ABCD$中,$AB\perp BD$,$\therefore \triangle ABE$和$\triangle ABD$都是直角三角形。
$\because \angle BAC = \angle ADB$,$\therefore \tan\angle BAC = \tan\angle ADB = \frac{1}{2}$,
$\therefore \frac{BE}{AB} = \frac{AB}{BD} = \frac{1}{2}$。
设$BE = a$,则$AB = 2a$,$BD = 4a$,由勾股定理,得$AE = \sqrt{AB^{2} + BE^{2}} = \sqrt{5}a = \frac{3}{2}\sqrt{5}$,
解得$a = \frac{3}{2}$,$\therefore BD = 4a = 6$,$\therefore BD$的长为$6$。
(2)如答图,过点$C$作$CF\perp BD$于点$F$,$\because BC// AD$,
$\therefore \angle DBC = \angle ADB$,$\therefore \tan\angle DBC = \frac{CF}{BF} = \frac{1}{2}$。
设$CF = b$,则$BF = 2b$,由勾股定理,得$BC = \sqrt{CF^{2} + BF^{2}} = \sqrt{5}b = \sqrt{5}$,
解得$b = 1$,$\therefore BF = 2$,$DF = BD - BF = 6 - 2 = 4$,
$\therefore CD = \sqrt{CF^{2} + DF^{2}} = \sqrt{1^{2} + 4^{2}} = \sqrt{17}$,$\therefore CD$的长为$\sqrt{17}$。
第12题答图
13. 如图,抛物线$y=-x^{2}+3x+4$与$x$轴交于$A$,$B$两点,与$y$轴交于点$C$,点$D$在抛物线上且横坐标为$3$.
(1)求$\tan\angle DBC$的值;
(2)若$P$为抛物线上一点,且$\angle DBP=45^{\circ}$,求点$P$的坐标.
答案:
13.解:
(1)令$y = 0$,则$-x^{2} + 3x + 4 = -(x + 1)(x - 4) = 0$,
解得$x_1 = -1$,$x_2 = 4$,$\therefore A(-1,0)$,$B(4,0)$。
当$x = 3$时,$y = -3^{2} + 3×3 + 4 = 4$,$\therefore D(3,4)$。
如答图,连接$CD$,过点$D$作$DE\perp BC$于点$E$,连接$BD$。
$\because C(0,4)$,$D(3,4)$,$\therefore CD// AB$,$\therefore \angle BCD = \angle ABC$。
在${\rm Rt}\triangle OBC$中,$\because OC = OB = 4$,
$\therefore BC = 4\sqrt{2}$,$\angle BCD = \angle ABC = 45^{\circ}$。
在${\rm Rt}\triangle CDE$中,$\because CD = 3$,$\therefore CE = ED = \frac{3\sqrt{2}}{2}$,
$\therefore BE = BC - CE = 4\sqrt{2} - \frac{3\sqrt{2}}{2} = \frac{5\sqrt{2}}{2}$,
$\therefore \tan\angle DBC = \frac{DE}{BE} = \frac{3}{5}$。
(2)如答图,过点$P$作$PF\perp x$轴于点$F$。
$\because \angle CBF = \angle DBP = 45^{\circ}$,
$\therefore \angle PBF = \angle DBC$,$\therefore \tan\angle PBF = \tan\angle DBC = \frac{3}{5}$。
设$P(x,-x^{2} + 3x + 4)$,则$\frac{-x^{2} + 3x + 4}{4 - x} = \frac{3}{5}$,
解得$x_1 = -\frac{2}{5}$,$x_2 = 4$(舍去),$\therefore$点$P$的坐标为$(-\frac{2}{5},\frac{66}{25})$。
AFO第13题答图

查看更多完整答案,请扫码查看

关闭