第93页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
9. (10 分)计算:(1)$2\sin30°+3\cos60°-4\tan45°$;
(2)$\frac{\cos30°}{1+\sin30°}+\tan^260°$.
(2)$\frac{\cos30°}{1+\sin30°}+\tan^260°$.
答案:
9.解:
(1)原式$=2 × \frac{1}{2} + 3 × \frac{1}{2} - 4 × 1 = -\frac{3}{2}$.
(2)原式$=\frac{\sqrt{3}}{1+\frac{1}{2}} + (\sqrt{3})^2 = \frac{\sqrt{3}}{\frac{3}{2}} + 3 = \frac{\sqrt{3}}{3} + 3$.
(1)原式$=2 × \frac{1}{2} + 3 × \frac{1}{2} - 4 × 1 = -\frac{3}{2}$.
(2)原式$=\frac{\sqrt{3}}{1+\frac{1}{2}} + (\sqrt{3})^2 = \frac{\sqrt{3}}{\frac{3}{2}} + 3 = \frac{\sqrt{3}}{3} + 3$.
10.(12 分)如图,在 $ Rt\triangle ABC$ 中,$\angle C=90°$,$AB=10$,$\cos\angle ABC=\frac{3}{5}$,$D$ 为 $AC$ 边上一点,且 $\angle DBC=30°$,求 $AD$ 的长.

答案:
10.解:$\because \cos \angle ABC = \frac{3}{5}$,$\angle C = 90°$,$\therefore \frac{BC}{AB} = \frac{3}{5}$.
$\because AB = 10$,$\therefore BC = 10 × \frac{3}{5} = 6$,
$\therefore AC = \sqrt{AB^2 - BC^2} = \sqrt{10^2 - 6^2} = 8$.
$\because \angle DBC = 30°$,$\therefore CD = BC · \tan 30° = 6 × \frac{\sqrt{3}}{3} = 2\sqrt{3}$,$\therefore AD = AC - CD = 8 - 2\sqrt{3}$.
$\because AB = 10$,$\therefore BC = 10 × \frac{3}{5} = 6$,
$\therefore AC = \sqrt{AB^2 - BC^2} = \sqrt{10^2 - 6^2} = 8$.
$\because \angle DBC = 30°$,$\therefore CD = BC · \tan 30° = 6 × \frac{\sqrt{3}}{3} = 2\sqrt{3}$,$\therefore AD = AC - CD = 8 - 2\sqrt{3}$.
11.(15 分)如图,在 $ Rt\triangle ABC$ 中,$\angle ACB=90°$,$D$ 是 $AB$ 的中点,连接 $CD$,过点 $B$ 作 $CD$ 的垂线,交 $CD$ 的延长线于点 $E$. 已知 $AC=30$,$cosA=\frac{3}{5}$.
求:(1)线段 $CD$ 的长;
(2)$\sin\angle DBE$ 的值.

求:(1)线段 $CD$ 的长;
(2)$\sin\angle DBE$ 的值.
答案:
11.解:
(1)$\because$在 Rt$\triangle ABC$中,$\angle ACB = 90°$,$AC = 30$,$\cos A = \frac{AC}{AB} = \frac{3}{5}$,$\therefore AB = 50$.
$\because D$是$AB$的中点,$\therefore CD = \frac{1}{2}AB = 25$.
(2)过点$C$作$CF \perp AB$于点$F$.
$\because$在 Rt$\triangle ABC$中,$\angle ACB = 90°$,$AC = 30$,$AB = 50$,$\therefore BC = \sqrt{AB^2 - AC^2} = \sqrt{50^2 - 30^2} = 40$.
$\because S_{\triangle ABC} = \frac{1}{2}AC · BC = \frac{1}{2}CF · AB$,
$\therefore CF = AC · BC ÷ AB = 24$,
$\therefore DF = \sqrt{CD^2 - CF^2} = \sqrt{25^2 - 24^2} = 7$,
$\therefore \sin \angle DCF = \frac{DF}{CD} = \frac{7}{25}$.
$\because \angle DCF + \angle CDF = \angle DBE + \angle BDE = 90°$,$\angle CDF = \angle BDE$,$\therefore \angle DBE = \angle DCF$,
$\therefore \sin \angle DBE = \sin \angle DCF = \frac{7}{25}$.
(1)$\because$在 Rt$\triangle ABC$中,$\angle ACB = 90°$,$AC = 30$,$\cos A = \frac{AC}{AB} = \frac{3}{5}$,$\therefore AB = 50$.
$\because D$是$AB$的中点,$\therefore CD = \frac{1}{2}AB = 25$.
(2)过点$C$作$CF \perp AB$于点$F$.
$\because$在 Rt$\triangle ABC$中,$\angle ACB = 90°$,$AC = 30$,$AB = 50$,$\therefore BC = \sqrt{AB^2 - AC^2} = \sqrt{50^2 - 30^2} = 40$.
$\because S_{\triangle ABC} = \frac{1}{2}AC · BC = \frac{1}{2}CF · AB$,
$\therefore CF = AC · BC ÷ AB = 24$,
$\therefore DF = \sqrt{CD^2 - CF^2} = \sqrt{25^2 - 24^2} = 7$,
$\therefore \sin \angle DCF = \frac{DF}{CD} = \frac{7}{25}$.
$\because \angle DCF + \angle CDF = \angle DBE + \angle BDE = 90°$,$\angle CDF = \angle BDE$,$\therefore \angle DBE = \angle DCF$,
$\therefore \sin \angle DBE = \sin \angle DCF = \frac{7}{25}$.
12.(15 分)如图,$AB$ 与 $\odot O$ 相切于点 $A$,半径 $OC // AB$,$BC$ 与 $\odot O$ 相交于点 $D$,连接 $AD$.
(1)求证:$\angle OCA=\angle ADC$;
(2)若 $AD=2$,$tanB=\frac{1}{3}$,求 $OC$ 的长.

(1)求证:$\angle OCA=\angle ADC$;
(2)若 $AD=2$,$tanB=\frac{1}{3}$,求 $OC$ 的长.
答案:
12.
(1)证明:连接$OA$交$BC$于点$F$,如答图.
$\because AB$是$\odot O$的切线,$\therefore \angle OAB = 90°$.
$\because OC // AB$,$\therefore \angle AOC = \angle OAB = 90°$.
$\because OC = OA$,$\therefore \angle OCA = 45°$.
$\because \angle ADC = \frac{1}{2} \angle AOC = 45°$,$\therefore \angle OCA = \angle ADC$;
(2)解:过点$A$作$AE \perp BC$于点$E$,如答图.
$\because \angle ADE = 45°$,
$\therefore \triangle ADE$是等腰直角三角形,
$\therefore AE = DE = \frac{\sqrt{2}}{2}AD = \sqrt{2}$.
$\because \tan B = \frac{AE}{BE} = \frac{1}{3}$,
$\therefore BE = 3AE = 3\sqrt{2}$,
$\therefore AB = \sqrt{BE^2 + AE^2} = \sqrt{18 + 2} = 2\sqrt{5}$.
在 Rt$\triangle ABF$中,$\tan B = \frac{AF}{AB} = \frac{1}{3}$,
$\therefore AF = \frac{1}{3}AB = \frac{2\sqrt{5}}{3}$.
$\because OC // AB$,$\therefore \angle OCF = \angle B$,
$\therefore \tan \angle OCF = \frac{OF}{OC} = \frac{1}{3}$.
设$OC = r$,则$OF = OA - AF = r - \frac{2\sqrt{5}}{3}$,
$\therefore 3(r - \frac{2\sqrt{5}}{3}) = r$,解得$r = \sqrt{5}$,$\therefore OC = \sqrt{5}$.
12.
(1)证明:连接$OA$交$BC$于点$F$,如答图.
$\because AB$是$\odot O$的切线,$\therefore \angle OAB = 90°$.
$\because OC // AB$,$\therefore \angle AOC = \angle OAB = 90°$.
$\because OC = OA$,$\therefore \angle OCA = 45°$.
$\because \angle ADC = \frac{1}{2} \angle AOC = 45°$,$\therefore \angle OCA = \angle ADC$;
(2)解:过点$A$作$AE \perp BC$于点$E$,如答图.
$\because \angle ADE = 45°$,
$\therefore \triangle ADE$是等腰直角三角形,
$\therefore AE = DE = \frac{\sqrt{2}}{2}AD = \sqrt{2}$.
$\because \tan B = \frac{AE}{BE} = \frac{1}{3}$,
$\therefore BE = 3AE = 3\sqrt{2}$,
$\therefore AB = \sqrt{BE^2 + AE^2} = \sqrt{18 + 2} = 2\sqrt{5}$.
在 Rt$\triangle ABF$中,$\tan B = \frac{AF}{AB} = \frac{1}{3}$,
$\therefore AF = \frac{1}{3}AB = \frac{2\sqrt{5}}{3}$.
$\because OC // AB$,$\therefore \angle OCF = \angle B$,
$\therefore \tan \angle OCF = \frac{OF}{OC} = \frac{1}{3}$.
设$OC = r$,则$OF = OA - AF = r - \frac{2\sqrt{5}}{3}$,
$\therefore 3(r - \frac{2\sqrt{5}}{3}) = r$,解得$r = \sqrt{5}$,$\therefore OC = \sqrt{5}$.
查看更多完整答案,请扫码查看