第8页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
1. 在三角形中,连接一个

顶点
与它对边中点
的线段,叫作三角形的中线。如图,线段AE
是△ABC的BC边上的中线。
答案:
顶点 对边中点 AE
2. 三角形的三条中线交于一点,这点称为三角形的
重心
。
答案:
重心
从三角形的一个顶点向它的对边所在直线作

垂线
,顶点和垂足之间的线段叫作三角形的高线,简称三角形的高。如图,线段AF
是△ABC的BC边上的高。
答案:
垂线 AF
在三角形中,一个内角的角平分线与它的对边相交,这个

角的顶点
与交点之间的线段叫作三角形的角平分线。如图,线段AD
是△ABC的一条角平分线。
答案:
角的顶点 AD
例1
如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的长度之和为13cm,求AC的长。

【点拨】本题考查三角形的中线,根据周长的差表示出AC-AB= 5cm是解题的关键。根据中线的定义知CD= BD,结合三角形周长公式知AC-AB= 5cm。又AC+AB= 13cm,易求AC的长度。
如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的长度之和为13cm,求AC的长。
【点拨】本题考查三角形的中线,根据周长的差表示出AC-AB= 5cm是解题的关键。根据中线的定义知CD= BD,结合三角形周长公式知AC-AB= 5cm。又AC+AB= 13cm,易求AC的长度。
答案:
【解】因为AD是BC边上的中线,
所以点D为BC的中点,所以CD= BD。
因为△ADC的周长比△ABD的周长多5cm,
所以AC-AB= 5cm,
所以AB= AC-5cm。
又因为AB+AC= 13cm,
所以AC= 9cm,
即AC的长度是9cm。
所以点D为BC的中点,所以CD= BD。
因为△ADC的周长比△ABD的周长多5cm,
所以AC-AB= 5cm,
所以AB= AC-5cm。
又因为AB+AC= 13cm,
所以AC= 9cm,
即AC的长度是9cm。
【变式训练1】如图,在△ABC中,AC>AB,AC= 2BC,BC边上的中线AD把△ABC的周长分成55和45两部分,求AC和AB的长。

答案:
解:设BC=2x,则AC=4x。因为AD是BC边上的中线,所以CD=BD=x。由题意得x+4x=55,AB+x=45,解得x=11,AB=34,所以AC=4x=44。
查看更多完整答案,请扫码查看