2025年综合应用创新题典中点七年级数学下册冀教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点七年级数学下册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年综合应用创新题典中点七年级数学下册冀教版》

1. [2024苏州校级月考] 先化简再求值:
$(3a + b)^2 - (b + 3a)(3a - b) - 6b^2$,其中$a = -\frac{1}{3},b = -2$.
答案: 【解】原式$=9a^{2}+6ab + b^{2}-(9a^{2}-b^{2})-6b^{2}$
$=9a^{2}+6ab + b^{2}-9a^{2}+b^{2}-6b^{2}$
$=6ab - 4b^{2}$.
当$a = -\frac{1}{3},b = -2$时,原式$=6\times(-\frac{1}{3})\times(-2)-4\times(-2)^{2}=4 - 16=-12$.
5. 已知$(2x - 1)^5 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$.
(1)求$a_0 - a_1 + a_2 - a_3 + a_4 - a_5$的值;
(2)求$a_0 + a_2 + a_4$的值.
答案: 【解】
(1)令$x = -1$,则$(-2 - 1)^{5}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5},\therefore a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}=(-3)^{5}=-243$.
(2)令$x = 1$,则$(2 - 1)^{5}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$,
$\therefore a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=1$. ①

(1)得$a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}=-243$. ②
① + ②,得$2(a_{0}+a_{2}+a_{4})=-242,\therefore a_{0}+a_{2}+a_{4}=-121$.
2. 已知$\vert a - 2\vert + (b + 3)^2 = 0$,则$3a^2b - [2ab^2 - 2(ab - \frac{3}{2}a^2b) + ab] =\underline{\hspace{50pt}}$.
答案: -42 【点拨】原式$=3a^{2}b-(2ab^{2}-2ab + 3a^{2}b + ab)=3a^{2}b - 2ab^{2}-3a^{2}b + ab=-2ab^{2}+ab$.
$\because|a - 2|+(b + 3)^{2}=0,\therefore\begin{cases}a - 2 = 0,\\b + 3 = 0,\end{cases}$解得$\begin{cases}a = 2,\\b = -3.\end{cases}$
$\therefore$当$a = 2,b = -3$时,原式$=-2\times2\times(-3)^{2}+2\times(-3)=-36 - 6=-42$.
6. [2024唐山期中] 已知$A = (2x + 1)(x - 2) - x(1 - 3m)$,$B = -x^2 + mx - 1$,且$A + 2B$的值与$x$的取值无关,求$m$的值.
答案: 【解】$\because A=(2x + 1)(x - 2)-x(1 - 3m),B=-x^{2}+mx - 1$,
$\therefore A + 2B=(2x + 1)(x - 2)-x(1 - 3m)+2(-x^{2}+mx - 1)$
$=2x^{2}-4x + x - 2 - x + 3mx-2x^{2}+2mx - 2$
$=(5m - 4)x - 4$.
$\because A + 2B$的值与$x$的取值无关,$\therefore 5m - 4 = 0.\therefore m=\frac{4}{5}$.
3. 已知$3x^2 - x - 3 = 0$,求代数式$(2x + 4)(2x - 4) + 2x(x - 1)$的值.
答案: 【解】原式$=4x^{2}-16 + 2x^{2}-2x=6x^{2}-2x - 16$.
因为$3x^{2}-x - 3 = 0$,所以$3x^{2}-x = 3$.
所以原式$=2(3x^{2}-x)-16=2\times3 - 16=-10$.
4. 已知$x - y = 6,xy = -8$.
(1)求$x^2 + y^2$的值;
(2)求代数式$\frac{1}{2}(x + y + z)^2 + \frac{1}{2}(x - y - z)(x - y + z) - z(x + y)$的值.
答案: 【解】
(1)$\because x - y = 6,xy = -8,(x - y)^{2}=x^{2}+y^{2}-2xy$,
$\therefore x^{2}+y^{2}=(x - y)^{2}+2xy=36 - 16 = 20$.
(2)$\frac{1}{2}(x + y + z)^{2}+\frac{1}{2}(x - y - z)(x - y + z)-z(x + y)$
$=\frac{1}{2}(x^{2}+y^{2}+z^{2}+2xy + 2xz + 2yz)+\frac{1}{2}[(x - y)^{2}-z^{2}]-xz - yz$
$=\frac{1}{2}x^{2}+\frac{1}{2}y^{2}+\frac{1}{2}z^{2}+xy + xz + yz+\frac{1}{2}x^{2}+\frac{1}{2}y^{2}-xy-\frac{1}{2}z^{2}-xz - yz$
$=x^{2}+y^{2}$.
$\because x^{2}+y^{2}=20,\therefore$原式$=20$.

查看更多完整答案,请扫码查看

关闭