2025年综合应用创新题典中点七年级数学下册冀教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年综合应用创新题典中点七年级数学下册冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年综合应用创新题典中点七年级数学下册冀教版》

11. (14分)如图,点D,E分别为三角形ABC的边AB,AC上的点,点F,G分别在BC,AB上,∠AED = ∠C,∠DEF = ∠B,∠EFG = 90°. 请说明FG⊥AB.
答案: 【解】$\because\angle AED=\angle C,\therefore DE// BC.\therefore\angle DEF=\angle EFC.\because\angle DEF=\angle B,\therefore\angle EFC=\angle B.\therefore DB// EF.\therefore\angle AGF+\angle EFG = 180^{\circ}.\because\angle EFG = 90^{\circ},\therefore\angle AGF = 90^{\circ}.\therefore FG\perp AB$.
12. (16分)如图,点D,E在AB上,点F,G分别在BC,CA上,且DG//BC,∠1 = ∠2.
(1)请说明DC//EF;
(2)若EF⊥AB,∠1 = 55°,求∠ADG的度数.
答案: 【解】
(1)$\because DG// BC,\therefore\angle 1=\angle DCB.\because\angle 1=\angle 2,\therefore\angle 2=\angle DCB.\therefore DC// EF$.
(2)$\because EF\perp AB,DC// EF,\therefore DC\perp AB.\therefore\angle CDA = 90^{\circ}.\therefore\angle ADG=\angle CDA-\angle 1 = 90^{\circ}-55^{\circ}=35^{\circ}$.
13. (20分)已知:点A在射线CE上,∠C = ∠D.
(1)如图①,若AC//BD,请说明:AD//BC;
(2)如图②,若∠BAC = ∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系;
(3)如图③,在(2)的条件下,过点D作DF//BC交射线CE于点F,当∠DFE = 8∠DAE时,求∠BAD的度数.
答案: 【解】
(1)$\because AC// BD,\therefore\angle DAE=\angle D$. 又$\because\angle C=\angle D,\therefore\angle DAE=\angle C.\therefore AD// BC$.
(2)$\angle DAE + 2\angle C = 90^{\circ}$. 设$CE$与$BD$的交点为$G$.$\because\angle D+\angle DAE+\angle DGA = 180^{\circ},\angle DGA+\angle CGB = 180^{\circ},\therefore\angle CGB=\angle D+\angle DAE$.$\because BD\perp BC,\therefore\angle CBD = 90^{\circ}$. 在三角形$BCG$中,$\angle CBD+\angle CGB+\angle C = 180^{\circ}.\therefore\angle CGB+\angle C = 90^{\circ}.\therefore\angle D+\angle DAE+\angle C = 90^{\circ}$. 又$\because\angle D=\angle C,\therefore 2\angle C+\angle DAE = 90^{\circ}$.
(3)设$\angle DAE=\alpha$,则$\angle DFE = 8\alpha$.$\because\angle DFE+\angle AFD = 180^{\circ},\therefore\angle AFD = 180^{\circ}-8\alpha$.$\because DF// BC,\therefore\angle C=\angle AFD = 180^{\circ}-8\alpha$. 又$\because 2\angle C+\angle DAE = 90^{\circ}$,$\therefore 2(180^{\circ}-8\alpha)+\alpha = 90^{\circ}.\therefore\alpha = 18^{\circ}$.$\therefore\angle C = 180^{\circ}-8\alpha = 36^{\circ}=\angle ADB$. 又$\because\angle C=\angle BDA,\angle BAC=\angle BAD$,$\therefore\angle ABC=\angle ABD=\frac{1}{2}\angle CBD = 45^{\circ}$.$\therefore$在三角形$ABD$中,$\angle BAD = 180^{\circ}-45^{\circ}-36^{\circ}=99^{\circ}$.

查看更多完整答案,请扫码查看

关闭