第99页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
5. (2024·南宁凤岭北路中学期中)南宁新闻网两位主持人在南宁沃柑基地现场直播砂糖橘直发哈尔滨的“投桃报李”之旅,假设两次满载的运输情况如下表:

(1)甲、乙两种货车每辆分别能装货多少吨?
(2)现有 54 吨砂糖橘需要再次运往哈尔滨,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?
(1)甲、乙两种货车每辆分别能装货多少吨?
(2)现有 54 吨砂糖橘需要再次运往哈尔滨,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?
答案:
(1)设甲种货车每辆能装货 x 吨,乙种货车每辆能装货 y 吨.依题意,得{3x+4y=31,2x+6y=34,解得{x=5,y=4.答:甲、乙两种货车每辆分别能装货 5 吨、4 吨,
(2)设租用甲种货车 a 辆,乙种货车 b 辆.依题意,得 5a+4b=54,所以 a=54-4b/5.因为 a,b 为正整数,所以{a=10,b=1,或{a=6,b=6,或{a=2,b=11.综上所述,共有三种方案,方案一:租用甲种货车10 辆、乙种货车 1 辆;方案二:租用甲种货车 6 辆、乙种货车 6 辆;方案三:租用甲种货车 2 辆、乙种货车 11 辆.
(1)设甲种货车每辆能装货 x 吨,乙种货车每辆能装货 y 吨.依题意,得{3x+4y=31,2x+6y=34,解得{x=5,y=4.答:甲、乙两种货车每辆分别能装货 5 吨、4 吨,
(2)设租用甲种货车 a 辆,乙种货车 b 辆.依题意,得 5a+4b=54,所以 a=54-4b/5.因为 a,b 为正整数,所以{a=10,b=1,或{a=6,b=6,或{a=2,b=11.综上所述,共有三种方案,方案一:租用甲种货车10 辆、乙种货车 1 辆;方案二:租用甲种货车 6 辆、乙种货车 6 辆;方案三:租用甲种货车 2 辆、乙种货车 11 辆.
6. 新考向 项目式学习(2024·南宁三中期中)


答案:
任务1:求每盒水笔和每本笔记本的价格
设每本笔记本的价格为$x$元,则每盒水笔的价格为$(x + 10)$元。
根据“买$5$盒水笔和$3$本笔记本共需$130$元”,可列方程:
$5(x + 10)+3x = 130$
解这个方程:
$\begin{aligned}5x+50 + 3x&=130\\8x&=130 - 50\\8x&=80\\x&=10\end{aligned}$
则每盒水笔的价格为:$x + 10=10 + 10 = 20$(元)
任务2:求签字笔的单价
设签字笔的单价为$a$元。
购买奖品的费用为:$20×(2m + 18)+10×(m + 18+30×2)+a=1446$
化简可得:
$\begin{aligned}40m+360 + 10m+180 + 600+a&=1446\\50m+a&=1446-(360 + 180 + 600)\\50m+a&=306\end{aligned}$
因为$0\lt m\lt18$,$m$为整数,$a$为整数且$a\leq10$。
当$m = 6$时,$50×6+a = 306$,解得$a = 6$。
综上,任务1:每盒水笔$20$元,每本笔记本$10$元;任务2:签字笔的单价为$6$元。
设每本笔记本的价格为$x$元,则每盒水笔的价格为$(x + 10)$元。
根据“买$5$盒水笔和$3$本笔记本共需$130$元”,可列方程:
$5(x + 10)+3x = 130$
解这个方程:
$\begin{aligned}5x+50 + 3x&=130\\8x&=130 - 50\\8x&=80\\x&=10\end{aligned}$
则每盒水笔的价格为:$x + 10=10 + 10 = 20$(元)
任务2:求签字笔的单价
设签字笔的单价为$a$元。
购买奖品的费用为:$20×(2m + 18)+10×(m + 18+30×2)+a=1446$
化简可得:
$\begin{aligned}40m+360 + 10m+180 + 600+a&=1446\\50m+a&=1446-(360 + 180 + 600)\\50m+a&=306\end{aligned}$
因为$0\lt m\lt18$,$m$为整数,$a$为整数且$a\leq10$。
当$m = 6$时,$50×6+a = 306$,解得$a = 6$。
综上,任务1:每盒水笔$20$元,每本笔记本$10$元;任务2:签字笔的单价为$6$元。
查看更多完整答案,请扫码查看