第59页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
1. 计算:
(1)$3a - 2 + 4a - 5$;
(2)$(2x^{2} - 3x)+(4x^{2} - 6x)-5$;
(3)$5x^{2} - 2(3y^{2} - 5x^{2})+(-4y^{2} + 7xy)$;
(4)$-3(2x^{2} - xy)+4(x^{2} + xy - 6)$.
(1)$3a - 2 + 4a - 5$;
(2)$(2x^{2} - 3x)+(4x^{2} - 6x)-5$;
(3)$5x^{2} - 2(3y^{2} - 5x^{2})+(-4y^{2} + 7xy)$;
(4)$-3(2x^{2} - xy)+4(x^{2} + xy - 6)$.
答案:
1.解:
(1)原式=(3a+4a)+(-2-5)=7a-7.
(2)原式=6x²-9x-5.
(3)原式=5x²-6y²+10x²-4y²+7xy=15x²-10y²+7xy.
(4)原式=-6x²+3xy+4x²+4xy-24=-2x²+7xy-24.
(1)原式=(3a+4a)+(-2-5)=7a-7.
(2)原式=6x²-9x-5.
(3)原式=5x²-6y²+10x²-4y²+7xy=15x²-10y²+7xy.
(4)原式=-6x²+3xy+4x²+4xy-24=-2x²+7xy-24.
2. 已知$A = a^{2} - 2ab + b^{2}$,$B = a^{2} + 2ab + b^{2}$.
(1)计算:$A + B$;
(2)计算:$\frac{1}{4}(B - A)$;
(3)若$2A - 3B + C = 0$,求代数式$C$.
(1)计算:$A + B$;
(2)计算:$\frac{1}{4}(B - A)$;
(3)若$2A - 3B + C = 0$,求代数式$C$.
答案:
2.解:
(1)A+B=a²-2ab+b²+a²+2ab+b²=2a²+2b².
(2)$\frac{1}{4}$(B-A)=$\frac{1}{4}$×(a²+2ab+b²-a²+2ab-b²)=$\frac{1}{4}$×4ab=ab.
(3)因为2A-3B+C=0,所以2(a²-2ab+b²)-3(a²+2ab+b²)+C=0.所以C=-2(a²-2ab+b²)+3(a²+2ab+b²)=a²+10ab+b².
(1)A+B=a²-2ab+b²+a²+2ab+b²=2a²+2b².
(2)$\frac{1}{4}$(B-A)=$\frac{1}{4}$×(a²+2ab+b²-a²+2ab-b²)=$\frac{1}{4}$×4ab=ab.
(3)因为2A-3B+C=0,所以2(a²-2ab+b²)-3(a²+2ab+b²)+C=0.所以C=-2(a²-2ab+b²)+3(a²+2ab+b²)=a²+10ab+b².
3. 先化简,再求值:$2(2x^{2} + 3x - 1)-(x^{2} + 2x + 2)$,其中$x = -1$.
答案:
3.解:原式=4x²+6x-2-x²-2x-2=3x²+4x-4.当x=-1时,原式=3×(-1)²+4×(-1)-4=3-4-4=-5.
4. 先化简,再求值:$xy - 2x[2y - \frac{1}{2}(x + y)]$,其中$x = -3$,$y = \frac{2}{3}$.
答案:
4.解:原式=xy-4xy+x(x+y)=-3xy+x²+xy=x²-2xy.当x=-3,y=$\frac{2}{3}$时,原式=9-2×(-3)×$\frac{2}{3}$=13.
5. 已知$A = 3x^{2} - x + 2y - 4xy$,$B = 2x^{2} - 3x - y + xy$.
(1)化简:$2A - 3B$;
(2)若$x + y = -\frac{6}{7}$,$xy = -\frac{1}{2}$,求$2A - 3B$的值.
(1)化简:$2A - 3B$;
(2)若$x + y = -\frac{6}{7}$,$xy = -\frac{1}{2}$,求$2A - 3B$的值.
答案:
5.解:
(1)2A-3B=2(3x²-x+2y-4xy)-3(2x²-3x-y+xy)=6x²-2x+4y-8xy-6x²+9x+3y-3xy=7x+7y-11xy.
(2)2A-3B=7x+7y-11xy=7(x+y)-11xy.当x+y=-$\frac{6}{7}$,xy=-$\frac{1}{2}$时,2A-3B=7×(-$\frac{6}{7}$)-11×(-$\frac{1}{2}$)=-$\frac{1}{2}$.
(1)2A-3B=2(3x²-x+2y-4xy)-3(2x²-3x-y+xy)=6x²-2x+4y-8xy-6x²+9x+3y-3xy=7x+7y-11xy.
(2)2A-3B=7x+7y-11xy=7(x+y)-11xy.当x+y=-$\frac{6}{7}$,xy=-$\frac{1}{2}$时,2A-3B=7×(-$\frac{6}{7}$)-11×(-$\frac{1}{2}$)=-$\frac{1}{2}$.
查看更多完整答案,请扫码查看